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ABSTRACT

The principal goal of USAF Contract F33615-70-C-1820 is to develop a semi-
automated system for computing the radar cross section (RCS) of aerospace vehicles I
over the t.-equency range of 500-20, 000 MHZ. Such a system requires the use of j
efficient techniques for calculating the high-frequency scattering from bodies with
edges such as wings and ducts.

In calculating the scattering from three-dimensional bodies with edges,-,
it Is frequently meaningful and useful to consider the scattering t-soclated with
an !r.cremental length of the edge and to describe this scattertig in terms of on
Incremental Length Edge Diffraction Coefficient (ILEDC). In this report the fne:,ry
of the ILEDC is developed, taking into account the actual distribution of surface
current near the edge. The theory is Illustrated by applying it to the problemn of I
scattering from a perfectly conducting polygonal plate. The Incremencal L.ength
Diffraction Coefficient (ILDC), which is the generalization of the ILEDC for itneiar
scattering features other than edges, is also treated. It is shown that two-
dimensional diffraction coefficients, such as those used by Keller and Uitmtse-,
can be considered as special cases of ILDC's.
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I. INTRODUCTION AND OVERVIEW

In dealing with high-frequency scnttering from theee-dimensioial bod'es

with edges, it is often meaningful and useful to treat the edges as diffracting

elements. The diffraction from an Incremental length of tho edge can then be

related tc the incident field by moans of a dyadic quantity* which we shall call the

Incremental Length Edge Diffraction Coefficient (ILEDC).

Our principal objective in this report Is to evaluate the ILEDC which

describes the so-called 'fringe wave" seattering from a perfect conductor and to 4
show how this ILEDC is applied. We treat the ILEDC as a special cace of a more

general dyadic quandity wh.ch we cail the Incremental Length Diffraction Coefficient

(ILDC). The ILDC is defined not just for an edge but for any line diffraction

feature, for example, a wire or a rounded edge.

Before considering the ILDC, we first develop many of the concepts of

diffraction coefficient theory and much of the nomenclature in a simpler context,

that of qc&tterini from an infinitely long cylinder. We describe scattering from

such a cylinder - either the total scattering or some physically meaningful

contribution to the scattered field - in terms of a dyadic quantity which we call the

Two-Dimensional Diffraction CoefiAcient ,2-D DC). The 2-D DC provides a simple

and compact way oi expressing the well-known edge diffraction results of Uflmtsev

(Reference 1) and Keller (Reference 3).|

The ILDC, which Is defined for all directions of Incidence and scattering,

is shown to be a generalization cf the 2-D DC, which is defined only for certain

combinations of Incident direction and scattering direction. Wherever the 2-D DC

is defined, it is equal to the corresponding ILDC. The fringe wave ILEDC is

the generalization of thc Ufimtsev 2-D DC and will thus be referred to as the

Uflmtsev ILEDC.

The material on the 2-D DC is given in Section II and is backed up by a

thorough discussion in the Appendix of scattering from an infinite cylinder.

The Ufimtsev 2-D DC is treated in Section 2.2.4 with special cases given in 2.2.5

and 2.2.6.

*For those who are not familiar with the term, a dyadic A is a quantity which

effects a linear transformation of a vector B into a vector C. We write the trans-
formation in the form C = A.B.
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The ILDC is studied In Section 3. 1 and the results are then specialized in

Section 3.2 to obtain the Ufimtsev ILEDC for an edge with wedge angle less than 180*

(so that there are no internal reflections) on a perfect conductor. Special results

for the knife edge case and for backscatter are included in Section 3.2. Section IV

illustrates the use of the ILEDC in solving realistic scattering problems.

The sample problem which we consider In Section IV Is high-frequency

scattering, both monostatic and bistatic, from a flat perfectly conducting plate

with a polygonal boundary when both source and observer are in the far-field

region. This is an appropriate choice because our investigations of UfImtsev's

approach, the Physical Theory of Diffraction (PTD), and our development of the

Ufimtsev ILEDC were originally motivated by our observation that the more 11

commonly-used Geometrical Theory o•f Diffraction (GTD) was not adequate for

rectangular and trapezoidal plate problems. (See Reference 2, Section 2.2.).

We assume in Section TV that edge interactions can be neglected and that we

can also neglect the effect of distortions of the surface current near the corners of

the plate.

Under these assumptions, the Physical Theory of Diffraction describes the

total scattering from the plate as the sum of two contributions, one due to the

physical optics surface current on the plate and the other due to the fringe wave

surf ace current concentrated near the edges of the plate. To find the fringe wave
current associated with a straight segment of the edge, we assume that the segment

Is part of the edge of an infinite half-plane and we take the difference

between the total surface current and the physical optics surface current for the

half-plane problem. It is readily seen that the fringe wave current associated

with every incremental length of a straight edge Is the same except for phase.

The fringe wave diffraction from a straight segment of length L is thus

described by the product of the Ufimtsev ILEDC dU with an appropriate E sln.X
X

factor obtained by integrating phase along the edge, and the total fringe

wave scattering is the sum of analogous contributions from all the straight

edges. By decomposing each sin X term as the sum of two exponentials, we

can obtain an equivalent representation in terms of contributions from the corners.

L ___ 2



The physical optics contribution to the scattering from the plate has been

calculated in Section V of Reference 11. and the most important results are repeated

here in Section 4. 1. Just as with the fringe wave diffraction, the physical optics

scattering can be represented either in terms of edge contributions involvingI ~sinX
the product of an TLEDC with a L Bv-- factor or in terms of corner contributions.

The total scattering can then also be expressed in terms of edge or corner

contributions which are the sum of the corresponding fringe wave and physical

optics contributions.

Solutions calculated by this approach are compared with experimental

results In Section 4.2 and it is confirmed that the approach is accurate over a

wide range of conditions.

j

It is important to note that the Ufimtsev ILEDC used here is calculated

by a method which takes into account the manner in which the fringe wave current is!

distributed near the edge. This is one of the reasons why the material developed

here has a broader range of applicability than the Ryan-Peters theory of Reference 10,

in which the total edge diffraction is assumed to originate from a filamentary edge

current with a value which is a function of the azimuth of scattering. (The Ryan-

Peters theory, on the other hand, has a broader range of applicability than standard

GTD.)

The material in Section IV is an example of how a problem is solved within the

framework of UfImtsev's PTD. The basic idea of PTD is to treat the scattered

field as a function of the surface current induced on the scattering body. This

surface current is in turn a function of the incident field, and thus we have

linked the incident field to the scattered field by way of the surface currents. In

many problems the linkage can be described in terms of diffraction coefficients

obtained from canonical problems - as has been done for the polygonal plate problem -

and it is not necessary in these problems to work directly with surface currents.

Thus, even though PTD is based on surface current considerations, the surface

currents may only enter a problem implicitly.

3I
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The usefulness of the ILEI)C is not restricted to simple situations like

that of Section IV in which the scattered field can be adequately approximated as the

sum of a physical optics contribution plus a fringe wave contribution. The ILEDC

can still be used to calculate the fringe wave contributions in more sorhiksticated

versions of PTD which also take into account contributions due to phenomena such

as corner currents, creeping waves, and multiple reflection or diffraction.

And the more general ILDC can be used similarly for bodies with line diffraction

features other than sharp edges.

For many problems, PTD leads to a solution which is simple in form and

which, like the corner diffraction representation of the polygonal plate solution,

has a physical interpretation in terms of rays emanating from discrete points on

the scattering body. For bodies with edges, a necessary though not sufficient

condition for the existence of such a scattering center interpretation is that the

physical optics scattering can be represented wholly or in part as an edge diffraction

phenomenon and that the edge diffraction can be described by a physical optics

ILEDC. As examples, the physical optics scattering from any flat perfectly con-

ducting plate can be expressed exactly by the integral of an ILEDC around the

edge (See Section 5.4 of Reference 11. ), and the physical optics scattering from

some doubly curved surfaces with edges can be approximated accurately as the

sum of a specular point contribution and the integral of an ILEDC around the

edge (Reference 12. ) For both types of problem, the edge integral can in many

cases be evaluated in terms of contributions from discrete points, but this is not I
always so.

We shall concentrate in this report on ILDC's which arise out of the

solution of two-dimensional canonical problems, that is, which represent scattering

from an incremental length of an infinite cylinder. Since most physical optics

diffraction coefficients are not associated with any two-dimensional problem,

they are thus outside the pale of this report. We note, however, that efficient

techniques for the evaluation of physical optics integrals are crucial to the

development of PTD as a practical tool for the treatment of realistic scattering

problems and, indeed, much of the advantage of PTD over GTD lies in the ability

to treat physical optics diffraction phenomena which have no two-dimensional

counterpart. References 11 and 12 give various examples of physical optics

calculations.

4



A good understandlag of the 2-D DC makes It much easier to understand the

ILDC and the ILEDC. For this reason, we consider the 2-D DC In detail In

Section II, developing the general theory in Section 2. 1, and then discussing the

Keller (GTD) coefficient and the Ufimtsev coefficient in Section 2.2. This study

is backed up by a thorough treatment In the Appe-&dix of scattering from an

Infinitely long cylinder. The Appendix Includes not only the material we need
for Section 11 but additional material for use in extending the diffraction coefficient

concept to situations In which source or observer or both are at finite distance

from the scattering body.

In Sections 1.3.3 and 2.1.2, we show that the far-field scattering due to

a plane wave incident on an Infinitely long cylinder can be Interpreted In terms

of rays emanating from the cylinder axis and that all scattered rays form the

same angle with the cylinder axis. Thus the rays emanating from a point P on

the axis all lie on a circular cone with apex at P. The angle which the scattered

rays make with the axis is found to be the same as the angle which the incident

wave makes with the axis so that, In the nomenclature of Figures 1 and 2,, we

have 0a=/3 1 for all scattered rays.

The 2-D DC which describes this scattering process (both magnitude and

polarization changes) has the form of a four-element dyadic which transforms

the incident polarization vector into a vector normal to the direction of

scatter!-ig. If we consider the geometry and composition of the cylinder to be

fixed, the 2-D DC is a function of the wave number k, the direction of incidence, and

the direction of scattering. But the latter two quantities are not independent because

of the requirement that the incident wave and the scattered rays form the same

angle with the axis. For a given direction of incidence, the 2-D DC is defined only
for those lirections of scattering which satisfy this criterion. As to the wave
number dependence, we use a normalization in which both the Ufimtsev and Keller

diffraction coefficients for a perfectly conducting edge are independent of k.

For Incidence normal to the axis, $ 0, the 2-D DC can be expreased in a

form In which only two of the four dyadic elements are non-zero. For perfect con-

ductor problems with any value of we can obtain a form with only two non-zero

elthments if the diffraction coefficient represents the scattering due to the total surface

carrent on the cylinder (as in the case of the Keller edge diffraction coefficient).

We may, however, need a third non-zero element if the coefficient represents the

5
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scattering due to some contribution to the total current% existence of such an element

means that the diffraction coefficient by It does not satiofy the requirements of

reciprocity.

It turns out that the complete form of the Ufimtkev 2--D D)C indeed has the

third non-zero element allowed by theory for A 0. Ufitntsev did not consider

this element in Reference 1, but its omission does not affect his results for two-

dimensional problems - because he considered only protlerns which can be reduced

to equivalent problems with = 0 (See Section 1. 3.2) -. nor does it affect his single

diffraction results for backscatter from bodies with ctkrved edges - because these

results involve only the value of the diffraction coefficient for = 0.

There are many three-dimensional problems •vib[h can be solved

satisfactorily using a 2-D DC. It is important to understand both why this can be

done for some problems and why it cannot be done for others.

Under appropriate circumstances, the far-field diffraetlon froem an edge C

which is illuminated by a plane wave can be Interpreted it, terms of rays

emanating from each point on the edge, with all the ra~ys which emanate from a

given point P forming a cone with apex at P. Under bhese same conditions, there

will be only a finite number of rays scattered in a giv'et direction, each such ray

ortginating at a different point on the edge. Thus we ca4 say that all the scattering in

that direction originates from these points.

The geometry for an incremental length of C. which is the samTe as the

geometry of an incremental length of an infinite wedge. it shown in Figure 3.

The cone of scattering angles at the point P is found bY ilentifying the tangent

vector to C at P with the axial vector t along the edke of the wedge and by

then applying the condition s 139 . The wedge angle 2 a at P Is the angle

formed by the tangent planes at P to the two surfacee whIch meet along C. It can

be shown that the amplitude of the field on a ray in the carved edge problem is closely

related to the amplitude of the field on the correspohdiin ray in the infinite wedge

problem; it Is only necessary to introduce a scalar Tector wrich accounits for t'c I
spreading out of energy due to the curvature of C.
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Thus the result of the infinite wedge problem, that Is to say, the Two-

Dimensional Diffraction Coefficient, can be used to solve the curved edge problem.

Indeed, for backscatter we need only the 2-D DC for incidence normal to the axis,

Os = t3 =0, because the scattering appears to emanate from those points at

which the tangent to C is normal to the direction of incidence and scattering. As

already noted, the 2-D DC for this special case has only two non-zero elements.

The conditions under which these observations are valid are that the

edge C be smooth and of sufficiently high curvature (but not so high that the

radius of curvature is of the order of the wavelength) and furthermore that the

direction of scattering is sufficiently far removed from any caustic directions

of the far-field scattering. (In physical terms, we have a caustic direction

when the rays diffracted in this direction from some portion of the edge C are

parallel to first order, so that the rays do not appear to 1e spreading out in the

far field region and giving the characteristic 1/R field behavior for large

distances R from the edge. The simplest examples are the backscatter and for-

ward scatter directions for normal incidence on a flat plate.)

When the tangent to C has discontinuities in direction (corners), when

segments of C are straight or almost straight, when the direction of scattering is

a caustic direction or close to a caustic direction, then the scattering can no

longer be described in terms of rays which obey the rules of two-dimensional

scattering. If a ray description of the scattering process is still possible, it

w11l involve ray phenomena which have no two-dimensional counterpart, for example,

rays scattered in all directions from a corner. Regardless of whether such a

description is appropriate, we must proceed toward the solution by first considering

scattering from lengths of edge rather than from isolated points.

To do this, we use the Ufimtsev ILEDC.

The Ufimtsev 1LEDC describes the scattered field due to the fringe wave

curre nt; induced by a plane wave on an incremental length of an infinite wedge.

T'hi yiantity and its gener:dixation, the ILDC, which describes the scattering

, t !u-ents induced o, incremental length of a cylinder of any given cross-



section, are, like the 2-D DC, four-element dyadice which transform the polar-

Ization vector of the Incident wave Into a vector normal to the direction of scattering.

If we consider the geometry and composition of the cylinder to be fixed, the ILDC

is in general a function of the wave number k, the direction of idence, and the

direction of scattering, with the two directions now independent. The

Ufimtsev ILEDC turns out to be Independent of k. All perfect conductor ILDC's

can be written in a form which has only three non-zero elements; furthermore, for

the important case of backscatter, the two diagonal elements are the same as the

corresponding elements of the 2-D DC.

The fringe wave diffraction from the edge C is obtained by integrating
the ILEDC over C, with proper account taken of phase shift along C. If there is

also an ILEDC which describes the physical optics edge diffraction, we can sum
the two ILEDC's and then Integrate. If there exists a ray description of the

edge-diffracted field, It can be found by properly interpreting the result of the

integration. That is, in PTD a ray description of the scattering, when appropriate,

is a result of the analysis rather than an initial assumption as in GTD.

If C is a closed curve all of which is geometrically Illuminated and If the

curvature of C is continuous and sufficiently large, then the diffraction will appear

to originate from those points on C for which = 1" Thus we have come

back to those cases for which the 2-D DC can be used to solve three-dimensional

problems.

In any mathematical writing, it is necessary to strike a balance between,

on the one hand, introducing special notation which leads to a simpler form for

the final results and, on the other hand, keeping the notation simple so that the

exposition is easier to follow. In this report we have leaned heavily toward

the use of special notation because we are writing primarily for the person who

wants to understand the physical significance of the results and to apply them.

A List of Symbols is included for the reader's guidance.

From the applications point of view, the most important material is

11



(a) The material in Sections 3.1.1 and 3.1.2 which shows how the ILDC

and ILEDC relate the far-field scattering to the incident plane wave of (2-3). Key

equations are (3-2), (3-3), (3-4), (3-9), (3-10), and (3-12).

(b) The evaluation of the Ufimtsev ILEDC dU in Section 3.2.1, for which the

key equations are (3-46A), (3-56) to (3-61), the definitions (3-47) to (3-51), the

integral forms (3-52) and (3-53) for the functions f and g, and the closed form

evaluations of f and g in (3-65) to (3-78) (with appropriate warning that (3-75)

to (3-78) have not been verified thoroughly). Also, Important special cases of

dU are treated in Sections 3.2.2 to 3.2.4. V

The corresponding material on the 2-D DC is

(a) The material in Section 2.1.2 relating the two--dimensIonal far-field

scattering to the incident wave of (2-3) by means of the 2-D DC. Key equations are

(2-19) and (2-22) to (2-24).

(b) The evaluation of the Ufimtsev 2-D DC, also designated d=U, as given

in Section 2.2.4. For actual computation the mo'3t useful equations are (2-98),

(2-100), (2-101), and (2-118). Important special cases are treated in Sections 2.2.5

and 2.2.6.

The Keller 2-D DC dK is treated in Section 2.2.3, and some of the results

are used in evaluating eU. The most useful equations for dK are (2-80b), (2-82)

and (2-83). Importait special cases are treated in Sections 2.2.5 and 2.2.6.

1I
12
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II. THE TWO-DIMENSIONAL DIFFRACTION COEFFICIENT

2.1 A FORMALISM FOR TWO-DIMENSIONAL SCATTERING PROBLEMS

2.1.1 THE CVLINDER GEOMETRY AND THE INCIDENT FIELD

Let us consider the problem of an infinite length cylinder with a cross

section of finite extent, composed of isotropic material and illuminated by a

plane wave. The problem geometry is shown in Figure 1. The unit vector t is

parallel to the cylinder axis. The cross section of the cylinder Is described by

the curve Lwhich we require to be of finite length. The unit outward normal

from the cylinder is n and the unit tangent to L is I so oriented that

in x I = t. (2-1)

The length parameter along L, In the direction of b is I. The length parameter

along the axis is t, and we represent the position of a point r in space as

r = + tt (2-2)

whire g Is the displacement from the axis of the cylinder. The

origin r = 0 can be chosen in any convenient manner. An x-axis normal to t

and a corresponding unit vector e x can also be chosen in some convenient

manner, and we can then Introduce a y-axis and a unit vector e such that
-y

tx y -! t
The incident plane wave will be written

II=Eo =Ep expi -Ike rj Zo =- [ o 3
-rE" 0_ , Zo0 o0=-erX~o (2-3)

Here Zi is the impedance of free space. As throughout this report, exp I-iwz}

time dependence, with w the angular frequency and t the time, is assumed and

suppressed. The wave number k Is given by

k = w/c (2-3A)
iI

where c is the speed of light in free space. The plane wave travels in the -e

-rrdirection, with er I a unit vector. 11%e vector pdsrbsteplrzto

I
of the wave. It is a complex unit vector and is normal to e , that is

13



1 1/2 r (2-4)
I . = 1 , .0 ,-

where Indicates the complex conjugate. In dealing with polarization, It is

convenient to make use of the unit polarization vectors e and e defined by

e =-(tx e I I e x e (2-5)
_, _ _r/terI , _. Ielxe

The vector e 1I normal tot and toer, and e is normal toe and e

The vectors e , e , -er, In that order, form the basis of a right-handed

Cartesian coordinate system. We can now write

I I
P- = P, e+p1 t (2-6)

where we call pl the perpendicular-polarized component (because i. is per-

pendicular to the cylinder axis) and p1 the parallel-polarized component

(because e has a component parallel to the cylinder axis). Since pi

Is a complex unit vector, the components p and p are In general complex

numbers.

We define the obliquity angle I1 of the incident wave by

sin-1 e . _ (2-7)

For incidence normal to the cylinder axis, 0, = 0. Otherwise, I has the
It

same sign as er t.

It is frequently convenient to write erI In the form_t

ei siln# ! C osB e1 r ' (2-8)

where •e Is a unit vector normal to t. In terms of A I we have
.r - n

I L t A e =CosP~ sin 1 Ai (2-9)
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2.1.2 THE FAR-FIELD SCATTERING

Let us now turn our attention to the far-field scattering produced

when the wave of (2-3) strikes the cylinder. We will presant the rosults in

a manner which is readily generalized to problems involving finite cylinders.

Most of the material in Sections 2. 1.2 through 2.1.6 is based on material

In the Appendix, especially the results compiled in Section 1. 3. 3.

At a point in the far-field, it is meaningful to use a ray interpretation

scat scatof the scattered field (e , H ). The geometry is shown in Figure 2.

There appears to be one ray through a given far-field point r. This ray

originates at a point on the cylinder axis and it propagates in a direction

swhich we shall designate by the unit vector e . Thus any point r can be

uniquely represented in the form

r=R +Tot (2-10)

Here t = T0 is the point on the axis at which the ray originates,

and we call R° the slant distance from the cylinder axis to the point r.
We designate the angle between e r and the axial vector t as

-r

+8 ) and we call .8 the obliquity angle of the scattered ray. We

thus have
sin =-e t , - s .(2-11)

-r - 2 - 2

Now, because of the special properties of the infinite cylinder prob-

lem, we find that all scattered rays have th'- same obliquity angle " Thus

a cone of rays originates at each point on the cylinder axis

and each far-field point lies on one such cone. In the case = 0. the

cones become discs and the rays travel radially outward.

The angle s turns out to be equal tofl,'

15



/3s /ift (2-12)

Thus, If we were only Interested in Infinite cylinder problems, we would

not even have to distinguish between the quantities P 8 andflt" Nevertheless.

we shall treat.8. as though it were an independent quantity so that we can

readily generalize from Infinite cylinder problems to finite cylinder problems.

It is frequently convenient to write er in a form analogous to (2-8), namely

e -slnj3s t + cc~s/ , (213S--r - (2-13)

with eAs a unit vector normal to t. (See Figure 1 for the geometrical details of

the scattered field.)

S1d
It Is also useful to define unit polarization vectors e Iand such that

e (t As

eL q -r a- )/. ea x e- r - r (2-14)

e xe 8= cos3 t + sin/ A S
-i -r --. - a t r (2-15)

and _ e , e ' in that order, form the basis of a right-handed Cartesian

coordinate system. These definitions are ana'ogous to those of (2-5) and (2-9).

For all infinite cylinder problems,e sand e are both at the same angle 1,6 1

to the t-axis. Important special cases are

S=e =t for 13 = = 0 (No obliquity) (2-16)

and

e for /is = -r e r (2-17)

Putting these two cases together, wp find

S- t (2-18)

for backscatter in a two-dimensional problem, where backscatter is only

possible for .s =.8l 0.

16



We oan represent the far-tteld wave in the form

Escat (r~eUCRO e-lktTO f s1 cat. e xscat (-9

where ZI 0s the wave Impedance of free space and kt io the axial wave tumber,

given by

1  k sin 13s " (2-20)

The radiation vector f is independent of R0 and T0 and is normal to erS. It

can be expressed in terms of a perpendicular-polarized component and a

parallel-polarized component as

f- = .Lf + f,1 e,1  . (2-21)

Furthermore, f is a linpar function of Eopj and thus we can write

f =SE 1 , (2-22)
0 k 12cos 13,

where d is a dyadic which can be written in terms of its elements as

d =d e e + dLii e8 e. + di. e.I P-1 + ts e (2-23)M ii -1 ± 11 11 1

The normalization in (2-22) has been chosen so that d is dimensionless and

also so that, for a body of perfect conductivity, d and d111 , are independent

of the obliquity angle.

If we consider the geometry and the composition of the cylinder to bp

fixed, then d is In general a functiorn of the wave number, the direction of

tnctde~ice, and the direction of scattering. WP thus write

d = d (k;/, 1 , 01 ; 0, ) , (2-24)

where 461 is the azimuth angle measured from the x-axis to e' ' and j6 is

the azimuth angle measured from the x-axis to er. The first 8, tells us

the obliquity angle for the Incident wave. The second 6 tells us that the

17



obliquity angle is the same for the scattered wave.

The function j of (2-24). with the two obliquity angles equal, we shall call the

Two-Dimensional Diffraction Coefficient of the problem. The notation is chosen so

that the Incremental Length Diffraction Coefficient d_ (k; fll' 0i; fle& 468). of

Section III reduces to the Two-Dimensional Diffraction Coefficient when f "

2.1.3 THE RELATIONSHIP BETWEEN FAR-FIELD SCATTERING AND

EFFECTIVE SURFACE CURRENTS

The radiation vector f Is also a linear function of the effective

electric surface current

Ke =n x H (2-25)

(amperes/m) and the effective magnetic surface current

K m =nxE (2-26)

(volts/m) on the surface of the cylinder. If we write K and KS-m

in component form as

K = K l+K t for q -e, m (2-26A)--q ql - 49t -

and if we write E and _h in component form as

A =a n +A 1 /- + A forA = E, H, (2-26B)

we find that the component forms of (2-25) and (2-26) are

Kel =-Ht, Ket = H ; K lE t I K mt E (2-26C)

For plane wave incidence, the effective surface currents are linear

functions of EoP . In light of this, it is convenient to introduce the electric and
A A

maenetic surtace current dvadics, K and K respectively, which are defined=e =M
by the expressions

18



A expl-Ikt K s IE .12 forq =e, mandall,. (2-27)-q -Eq E l o-:

We see that an an describe those qualities of the surface currents

whi 2h arr independent of position on the axis and of the amplitude and polar-

izatton of •he incident wave.

The surface current dyadtcs can be written in elempnt form most

simply as

AKle +e + Kt ts, +Ktt e . (2-28)

Here the elements K1J are functions of wave number, direction of incidence,

and position on the cross section curve L; that is,II
Li=R=tj (k;e__r ;1) = 1 (k;t, ; 0 ) (2-29)j

Let us next define the dyadic

W =W (k;Ri, 0. fs'C ; I

- WIje. e2 + Wl,, e_ e' +W,12.6 e.. WI ee (2-30)

a A 8 A
- Zo s x(er xgK)+er xK ]

r -e -r m

"The elements of W are

w1] :a-r ._ zo •eli •s& mtj
"• "2 Ke Io •mj +csS

sA

r.) sin 5 Kmjj
J j.,i. (2-31)

Will j e n -) R:m J + co19 K

2 . r 0 o e ti

-(�_�.�_n)sing, z o
S0 0Ij
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0

We can now express the two-dimensional diffraction coefficient d

In terms of % and thus in terms of K and K. The result is
we =M

-I -/4
d = - SkfL dI' exp 1-1kcos s p- I , (2-32)
"- 2 (2f7r)

where a printe indicates a function of the integration variable. (To derive this result,

we start with (1-104), use (2-22) to represent fin terms of d, and express W in terms

of the closely related dyadic V. ) At this point, we are only stating the validity of

(2-32) for the case FS =JS which arises in two-dimensional problems. We will see
5 1

later that (2-32) is also meaningful when (3 # (3

It can be shown by integration by parts that (2-32) still holds if V" is replaced

by a dyadic WV with elements

(e ̂*.n)Z Zoe +cos/• K~
jW is- r - Z e1J s mtj

+ Tytal) Bs o! "
J '% j ;mj (2-33)

W - n) K-_ + cosf3 Z Kut
ii r - mj s o etj

1 A+ TT- tan~r o ^
-"- (Z 0 Kelj 

I
A

Because jand K are the true effective surface currents Induced

by a source which does not lie on the cylinder surface, they are continuous

and differentiable In I at all points of finite curvature of the cross sectior.

curve. The 1-derivatives do go to Infinity at edges, but the singularities

are Integrable. (For a general discussion of fields near edg es, see Reference 5.)
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Matters will not be so simple, however, when we deal with discon-
A A

tinuous Ke j and KmIJ such as those of the physical optics contribution.

2.1.4 SYMMETRY PROPERTIES

A A
All the elements of K and K are either even or odd functions of

ti ~Specifically, we have

K q(- =K q (j) 0 forq=elI , etli, mill , mtI;

A^1 (2-34)
S=-q(•t)for q =eill , etl , mil , mtl1

Here we have omitted the arguments which are not varied.

From these symmetry properties and (2-31), we obtain

Wq (-13; -f•s ) = Wq(f3i;(3s) forq = LI ,lilt;
q q (2-35)

=-Wq(1i;B ) forq = Il i.

The symmetry properties of W are the same. Indeed, we see from (2-32)

that those of d are also the same:

d -q 1 ; 38 )=dq (fi; f3) for q =li 11II1

dq ()t; )s ) forq =ill, III (2-36)

From this, we immedlately obtain the very important result that the cross-

terms in d vanish for non-oblique incidence and scattering:

dli1 (0;0) = d( (0;0) 0 (2-37)

2. 1.5 THE PERFECT CONDUCTOR CA.FAE

Fel a Ur, ii cor-lu•Lor, we ha',e

-- 0, Keil= 0 (2-38)



Furthermore, we have the expressions

K el I (k; 131.01,,; l) KeI (k cos 3S; 0, 1, 1) cos/ , (2-39)

Keti ( •; !) = 01; Ke (k cos, 1 ; 0, ot; P) tan Ot (2-40)

AA

KetIi(k;, B. ; 1) K et , (k cos/3|; 0, i p) (2-41)

which relate the surface currents of the oblique incidence problem to those

of a non-oblique problem for the shifted wave number (k cosB ). (See Section

1. 3.2 ftr a detailed discussion of the relationship between oblique and non-oblique

incidence problems for perfect conductors.)

By using (2-38) to (2-41) in (2-31) and (2-33). we obtain

W, I (k;/g~;•%z=z Cos 1o/; 0, 1l; 0. 0s;) 9Cos is,

(2-42)

S(e n_) Z K 1 (k cosl3 1 ; 0,wi; t) cos/.i

W) (k; 0 , (2-43)

Will t(k;(3[, ,[; --- ,ln • [cos f3, (e.s n_ )."="

+ I K" (k cos8i0; 0,•i; 0 ), (2-44)

W l(k;1311,t; 13t, fs; t) =WWt 11 (k Cos/B 1 ; 0, 0 0, s; ) cos/31

=Z° Ketl,(k cosf3 ; 0, TL; L) cos , (2-45)

=Wq q =1,1, gu,(2-46)q q

w l. (k;/ p 0j; 01•, €s ) =0 .(2-47)

22
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We now readily find from (2-32) that

dq(k;/l= dq (k cosB/i; 0, 1; 0, , q =JJ., olin; (2-48)

dji I(k;)319 ; 1; A, ) =-) ; (2-49)

I

dll j (k; Oi 9•t;/3l, ,s ) =0 (2-50)

This is a statement In diffraction coefficient terminology of the well-known

fact that the far-field scattering at oblique Incidence on a perfectly conduc-

ting cylinder can be found by solving a non-oblique incidence problem at the

shifted wave number (k cos i ). (See Section I. 3. 2 of Appendix I.)

2.1.6 APPROXIMATE SOLUTIONS AND CONTRIBUTIONS TO THE SOLUTION
A

Thus far, we have assumed that d, m and W are exact values.
we' tm M

Frequently, however, we have to deal with approximations to these quan-

titjes.

Equally Inportant, we frequently represent these quantities as

the sum of various contributions. For example, In the wedge problem, we
express = and = as the sum of a physical optics contribution and a

fringe wave cottribution.

KPO - (2-51)

where the superscript U (for Ufimtsev) indicates the fringe wave contribution.

We then obtain analogous representations of W and d. each as the sum

of a phyuical optics contribution and a fringe wave contribution.

Approximations to contributions are a third Ipiportant type of non-

eyact solution.
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It is important to realize that these contributions and approximations

do not necessarily have all the same properties as the true solution.

In practice we try to give the non-exact solution as many properties

as possible of the exact solution. Thus we always choose contributions and

approximations for d and the _ so that they have the four-component form of

(2-23) and (2-28) respectively, and so that they have the functional depen-

dence of (2-24) and (2-29) respectively. We always require that (2-30),

(2-31), and (2-32) - which relate W to the and d to W-hold for each in-

dividual contribution separately. It then follows that we can always replace

W in (2-32) by & of (2-33) on a term-by-term basis. We must be careful,w

A
however, when dealing with a contribution for which the K are discontinu-

ous (as they are in the case of the physical optics contribution for a wedge),

to include impulse functions in the 9K lo/f term3 to account for the dis-

continuities. (See Section I. 2.4.)

We furthermore consider or.iy contributions and approximations for

which the symmetry condition (2-34) holds. Thus the symmetry conditions

(2-35), (2-36) and (2-37) will also hold for each term.

Summing up, we can without difficulty always work with contributions

and approximations for which all the formulas of Sections 2. 1. 2 to 2. 1.4 are

valid.

As to the perfect conductor formulas of Section 2.1. 5, we always

choose contributions and approximations which satisfy (2-38), (2-39), (2-41),

(2-42), (2-43), (2-45), (2-46), (2-18), and (2-49). The remaining four equations,
A

for Ketl, Wi I W II , and d ,,f are, however, frequently not satisfied term-

by-term by the contributions which are used in practice. Most importantly,

the d 1 for a contribution or approximation may be non-zero.
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As an example, consider the fringe wave contribution to the scattering

from a wedge with one face illuminated, the other in shadow, when .8 1 0. The

AU
fringe wave current component Ketl (k; fi,01; 1) is finite at the edge. On the

other hand, the current component i L(k cos j9; 0. Ot; i ) is discontinuous

at the edge, with the discontinuity equal and opposite to that in the physical

optics contribution, and thus the 1-derivative of this component has an impulse at

the edge. Clearly (2-40) cannot be valid at the edge. It turns out that the two

sides of (2-40) differ only by the impulse at the edge, but this difference is

enough to invandate (2-44), (2-47), and (2-50).

(I should be noted that we can eliminate this difficulty by decomposing

the surface current into a "modified" physical optics contribution, with the

proper impulse function added to K so that (2-40) will hold, plus a '•rodtfled"eti(24)ilhodplsa"oii"
fringe wave current, with the equal and opposite impulse function included. It

is quite possible that this is the procedure we shall adopt inifuture work. For

the present, however, we have decided not to introduce the additional complication

of redefining physical optics.)

Whenever (2-40) does not hold, (2-44) and (2-47) must be replaced by

the more general expressions

w I (k; .l, 0t; 0,, 18; 1) (2-52)

=IZo KetIi(k;oi#,;f) - (es. zo Z e(kcos/ i; 0,0,1; )sing jcos /3

j, i (k;oi,A;13i,. 't;I (2-53)

(A I ao" LII
Z o I kt1(k; ti.4 i; I) + --- K eUkcs, ,0'p1;ttan~j1cosP1

which can be derived from (2-31) and (2-33) by use of (2-38) and (2-39). In such cases,

d11 wllWl usually be non-zero forf l 0 and can be calculated from (2-32).
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2.2 THE UFIMTSEV AND KELLER DIFFRACTION COEFFICIENTS FOR A CON-

DUCTING WEDGE

2.2.1 BASIC IDEAS

Let us now consider the case In which our cylinder of infinite length

is a wedge whose two faces are infinite half-planes.

We are interested in this problem not just for its own sake but, even

more importantly, because the wedge Is the simplest body which has an edge.

In practice, we treat the wedge problem as a canonical problem, and wp usp

the results in solving a variety of other problems involving bodies with edges.

In keeping with this practical emphasis, we shall use the term edge diffraction

coefficient rather than wedge diffraction coefficient.

The geometry for scattering from a wedge is shown in Figure 3. The

wedge angle Is 2a. The t-axis, at which p = 0, is chosen to coincide with the

edge, which we designate as C. The unit vector n bisects the wodge angle and
-O

points out of the wedge. We also define a unit vector

b = t x n (2-54)
-O

so that no, b, t, in that order, form the basis of a right-handed Cartesian

coordinate system. The two faces of the wedge are designated as S. and S,

with b pointing from the S4 side to the S side. The unit outward normals to

S+ and S_, which we designate as n+ and n respectively, are given by

n =n sino- -b cosa

(2-55)
n =n sin aG+b cos a

We also define unit tangent vectors e P and e p which lie on S4 and S8 res-

pectively, and which are normal to t and directed away from tho edge, so

that
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+%

!p = -(n coS a +bsin a)
_ -- o os - b sino)~ (2-56)

The x-axis from which we measure 0, ard 0s is chosen to bisect the

wedge angle and is so oriented that

26x= -no (2-60)

The wedge factor

V 2 ("7-a) (2-58)

plays an important role in the wedge diffraction results. This factor has a

minimum value of 1/2 for a knife edge and increases with a. We shall limit

consideration here to the case of acute wedge angles

a < - (2-59)

Thus we will always have

1 < I
2 - (2-57)

For values of a greater than 17/2, matters are complicated by the presence

of reflections between S+ and S.

We will consider in detail two kinds of diffraction coefficients. The

Keller diffraction coefficient dK describes the exact solution of the wedge

problem, the far field produced by the total current on the wedge.

The Ufimtsev diffraction coefficient dU describes the contribution to the scat-

tered field produced by the "fringe wave" current, which is the difference

between the true current and the current predicted by physical optics.

For most angles of incidence, the fringe wave current is concentrated near

the edge.

Somctimes it is convenient to define a third type of coefficient, the
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PO
physical optics diffraction coefficient, dP, which describes the contribution

to the scattered field due to the physical optics currents on the wedge. This

is related to the other diffraction coefficients by the simple formula

d = dK _ dU (2-61)

In (2-19) and (2-22), we defined d in terms of the far-field solution.

The wedge, however. is a cylinder of infinite cross section, and thus it is not

a priori certain that there is indeed a far-field region, that is, a region In

which the amplitude and phase of the far-field wave depend on Ro in the manner

of (2-19).

It fortunately turns out that, for most combinations of 4P, and 0s, thereI

does exist a far-field region.

There are, however, combinations of 0, and 0. for which this is not so.

In these cases, no matter how large we make R0 , we never reach a region in

which the field decreases as R 0 1/2 in the e direction. For these cases, aOr

formal calculation of d yieldr an infinite or Indeterminate result. One of the

advantages of dU over dK is that .dK has a singularity whenever lies on
M -8

a geometrical shadow boundary or reflection boundary, but d is finite and

uniquely defined except for grazing incidence problems with n= + a.

Even though dK exists for most combinations of Ot and 0 s, it cannot

be computed using (2-32). The conditions for validity of (2-32) are more

stringent than those for existence of a far-field region.

2.2.2 SHADOW BOUNDARIES AND REFLECTION BOUNDARIES

Consider now a wedge with a > 0. As we see from Figure 4, there

are five types of illumination possible:

Case 1. Only S+ is illuminated (a < 'k< nr - a);

Case 2. The Incident wave illuminates S and grazes S_ ( = ir - a);
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Case 3. Both S andS are illuminated (o- a <( < n+ a);

Case 4. The incident wave grazes S. and illuminates S (0 = ff + a);

Case 5. Only S is Illuminated (l + a< <2r - a).

We refer to Case 2 and Case 4 as the transitional cases.

Let us first consider the other three cases. Cases 1 and 3 are illus-

trated in Figure 5 , and Case 5 Is analogous to Case 1. In Case 1, there is

a shadow boundary at

•s=•+ f i+ " "(2-62)

That is, In the simple geometrical optics approximation, the region 4p <(O + ff)

is illuminated by the incident wave and the region (k > (0 + 77) is in the shadow

of S+. There is also in Case I a reflection boundary at

0s =-OR+ 5 ir + 2 a - 01 (2-63)

That is, in the simple geometrical optics approximation, a wave reflected
from S÷ exists In the regon 0 < ( v + 2a - t) and is absent In the region

fro S exssiAtergo

08 > (iv + 2a - b) The two boundaries coincide when - a.

In Case 3, there are two reflection boundaries, one given by (2-63) and

the other by

= -- 3-~- 2 (Reflection from S) , (2-64)

In Case 5, there is a shadow boundary

S- 1 (Shadowing by S) (265)

and a reflection boundary with 0 s given by (2-64). The two boundaries coin-

cide when = 2f - a.

We see that there are four ditterent types of geometrical boundarlea,

the shadow boundary and the reflection boundary for S. and the analogous
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boundaries for S-. In each case, we actually encounter two of those boundaries.

These two we shall call ,me real boundaries for the given value of A.I

If we now evaluate <R+' S and for Case 2, which Is a transi-

tional case, we find

S;3 2t, Tr-o .(266)

We thus see that there Is a reflection boundary at

=+ 3 a (2-67)

and a double boundary along S at

SS+ = - = 2 TT- (2-68)

which is both the shadow boundary with reference to face S÷ and the reflection

boundary with reference to face S_.

Similarly, in Case 4, there is a reflection boundary at

0 =<R = 2 -3a (2-69)

and a double boundary along S+ at

0s = cS- = OR+ (a 2-70)

which is both the shadow boundary for S and the reflection boundary for S+.

To unify all these results, we generalize the concept of a geometric-l

boundary as follows:

For every value of 01, there exist four geometrical boundaries,

given by (2-62) to (2-65).. A given boundary may be real, lying in the

open range a to (2Zn - a); it may be a grazing boundary at a or (2?r -a);

or it may be a virtual boundaiy which lies outside the closed range a to

(2n - a). Grazing boundaries oc(-ur in pairs, and the nuibDr• of virtual j
boundaries equals the number of real boundaries.
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The generalized concepts also hold for the knife edge problem a = 0.

In thiu prdblem, we have Case 1, Case 5, and one transitional case, 15, ff,

for which there are two pairs of grazing boundaries, one at 0 and one at 21.

We now Introduce the notation 6,+ for the angle from A s to the shadow

boundary with reference to face S+,

S+ qlS+ - OS08

and we similarly define

R÷ OR+ +%= (if+2a) -q•. , (2-'t 2)

6 = 'S- - 's = (r (2-73)

6R-. =PR - = (3 -2a) 2 a (2-74)

Here

S(P - (2-75)

OZ =1 + s "(2-76)

The 6 are meaningful even when they correspond to virtual boundaries.

It is important that the 6j be uniquely and appropriately defined, be-

cause we will be considering trigonometric functions of fractions of these

angles. As long as we restrict 0, and s to be angles outside the wedge, the

proper values of the 6j are obtained by choosing 0, and 0 in the range

a O 0i (2 n-a) , (2-77)
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a _ 5 (21 -a (2-7U)

in working with the 6 the Identities

6R+ + 6 = 2 IT--s-al a 6R+ " s --2 (0-,a)

6 R-_+ S- 2 [ . +a) 6 , 6 - 6S_ = 2 1 2--{(t+a (2-79)

6 -6 =217, 6R- 6R+ 2 17-4 a

frequently prove useful.

2.2.3 THE KELLER COEFFICIENTS FOR A PERFECT CONDUCTOR

Thus far we have not epecialized to the case of a perfectly conducting

wedge. Let us now make that specializattin.

The Keller diffraction coefficient for a perfect conductor is given

in Section 3 of Reference 3. In our notation, these results become

dK d e I K e (2-80a). -i + ! d _, •i

Kd _ + s i K 1 K s I s Ia E e 1 1 ) +d e (2-80b)

where

K K K K K K
aa bd ,

dK = .(dK d (d dK (2-81)a 2 1 d1 )db ~ uI
and

j 7r/4
K e v sin v, 2

d =(2w) 1/2 cos mv' Cos , ' "@ )( -2



i 1/4dK e i_ fd MeIr/Vsi i (2-83•)
d b - 2 1 r)1 /2 C o s V . + o [ v[ 7 ( 0 1 + 0 ID8 ~

Here we have used the simplified notation d., d Nfor d±, d, 1 " In accord

with (2-49) and (2-50) there are no cross-terms in jN. Furthermore,

is IDdependent of k and of 0,. (From (2-48) we see that independence

of k implies independence of

By straightforward application of btandard trigonometric identities,

we can obtain the equivalent forms
dK = e' A V Pin I/,_ _ (2-84)

a 2(2w) j2 Sin 6 S,- (2-85)

2 (27) sin 6 )sin(-2 )

These are not as convenient for computation as (2-82) and (2-83), but they

show how simply thb diffraction coefficient is related to the positions of the

geometrical boundari es.

It is a simple matter to decompose each expression (2-84) and (2-85) into a

contribution from the current on S+ and a contribution from the current on

S-. Let v's write

d dK 1dK K K +dK
d d +d q dK q = 1, 1I, a, b, etc. ( (2-86)

where + indicates the S+ contribution and - indicates the 8 contribution. We then

readily find
"i "/4

K I V cot (2-87)d; + : 2 (2-./ r/ )o M I + ,

d2K- I e v cot 2 dS- (2-88)

a 2 (2 )1/2

I - /4
K e (V (2-99)= - 1 v cot -6 (2-R

2 (2w) 2R



IAw/

K e ot (2-90)
db~ 7 1/22 (2,,)i/

and
d ewi/4 sin (. +2d? =. , 1(2l/2 v (I++R)(2-91a)

2 (2w) sin s+in 2R+,

et./4 OLD v,,[(,4-a)-s
e if aI~Et, (2-91b)

(2w)1 / 2  Cog I '1 of) - cogn (u(IT+'a ) ---

I w/4 Cos V (21r- 4)
(2-91.0)

(2 w) 1/2 sin is(Or- 0) - sin V(Zf- 0s)

dK eI w/4 sIn --L (6 +6
d' Ki e2 8- R-) (2-92a)

2(2w)1/2 sin -!- 6 sin IV-

er /4 sin tL(n-r ) - s a

cos VY(2 f-a) - €1]- Cos v [(a- 0) -29b
(2 wr)

Ie-ff/4 Cos V~s
-e V829c

1/2 sin Y('~-*I )+ sinz.'s (2-92e)(2wf)

I w /4 sin ' .- 6+)
d K1e 2 6 s y - 2 S+ R+ (2-93a)

H 2( 1/2 r sin -n-t-6

2 S+ 2 R+

en/4 COr u (iV - <a)

(217) 1/2 Cos 1/~' -04 - coa s r~)-4

eln4 Cos (2-93c)
( e )1/2 sin v I'- s..i V i(1-1 " ) EY

2 (27/4 sin sin 2 ' -
dli V e2 (2 -T) R- (2-94a)

2(2Y 2f a~i7in -Z-[6( sin 2 - -

e in,!4 sin vs 1(2 11 •)-,
( n -- / IT " ;{- ( : - ) -Jj C s f -x I 2-94b)

(2 V)

(2 17) 1/2 sin V ( if-s + to

In each eqiuation, the sine terms in the numerator of the 11a" form and of the

'b" form are equal, as can be verified using (2-79).
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now we consider the d K as functions of s we find that
I0t

d.t + has odd symmetry about 08 = v+a;

d has odd symmetry about qs = n-a;

d has even symmetry about 5 = nr + a;

d _ has even symmetry about 0s= " -a.

These are exactly the symmetry properties we expect from the concept of

each face of the wedge being a radiating current sheet.

R is readily verified that the results given in (2-87) to (2-90) add up to yield

the results given in (2-84) and (2-85). The "a" and 'b" forms of (2-91) to (2-94)

are obtained from (2-81) and (2-87) to (2-90) by using the identity

DotxcotY= In (y -k x. 2 sin ( y - x)
sinxsiny cos (y-X)-cos(y+x) , (2-95)

and the "c" forms are then obtained by using the definition (2-58) of V and

standard trigonometric identities.

We omit here the proof that the terms with subscript + and -

are indeed due to currents on S+ and S respectively, but we note

that this proof is easily made as a by-product of the derivation of the

Incremental Length Diffraction Coefficient.

There is no difficulty in evaluating any of the expressions for

d and its components In the transitional cases

17* a

On the other hand we see from (2-87) to (2-90) that dK Is singular
M

when 6S+, 6e, 6 or A is zero. This confirms our statement in Sec-

tion 2. 2. 1 that dK has a singularity when s lies on a shadow boundary or a

reflection boundary. It can furthermore be verified that, because of the con-

dition a < "-, the arguments of the cotangents In (2-87) to (2-90) never

reach ry or - v, and thus the shadow boundary and reflection boundary singula-

.rIi1.s are the only singularities of dK
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2.2.4 THE UFIMTSEV COEFFICIENTS FOR A PERFECT CONDUCTOR

The Ufimtsev diffraction coefficient dU for a perfect conductor has the

form

dU= d Ue8eI d U e e I + dU eS 1 (2-96)
1 -1 -1 x -H1 -1 11 - 1

where we have used the simplified notations of Section 2. 2. 3 and also dX In-

stead of d, II for the cross-term. From Section 2. 1. 6, wp see that this is

indped the most general form we ever encounter for a perfect conductor

diffraction coefficient; d is always zero.i II

It is convenient to proceed as in Section 2. 2. 3 and define d aU and

dbU such that

dU =dU U , U dU U
a (2-97)

dU=1dU U U 1 U_ ,U
a 2(d + d db (d I I

We then can write
U U s i s I U si si dxU SdU da (e ed +ele) + d (e t-e ei) + e et . (2-98)

- a b~ -I-I o t - ii-I

We also proceed analogously to (2-86) and define

dU d U +dU dU=•U+d , q =Ul1 x,a,b,etc. (2-99)

= + - q q+ q-

where + and - indicate contributions from S. and S respectively.

The diagonal elements of dU are given in Section 4 of Ufimtsev's book

(Reference 1). Expressing Uflmtsev's results in our notation we have

""!e/4
daU =dK a)1/2 [ U+ (01)U-I)tan (2-100)

2 (2

db d ir/4 0• U-20 0+ +2aK 2+ 2e 1/2 + (00l tan a U _ (01l) Itan I ,' t 2-101)
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Here U. and U are step functions defined by

U+(4) =Ifor(17+a)>4)i>a I
undefined for 4) = + a (2-102)

= 0 otherwise J

U() = 1 for (2n - a)>• > ( n- a)

undefined for 4) = r- a1 • (2-103)

=- 0 otherwise

That is, U4 I when S÷ is illuminated, U_ = 1 when S_ is illuminated.
We see that da and db are independent of k and 0i, and thus dUI and

dU are independent of k and 16,. We also note that

dU =dK for (17+)>Os>(7-0a)
a a

By making use of the easily-verified identities

tan ~~ ~ 1I 6O (21) In1981 o + ctSA-104)

r a 2 ~ w v , u I ~ ~ 2 S c t2  2 ~
11

tan (O1 -+ 2a) = cot 2 R+ (2-105)

tan+ +• +b +2 a) = cot .--L- 6R-

we can write (2-100) and (2-101) in the equivalent forms

U K el t/' 4  6S+ 6S- (2-106)a a d a + 2 7 2 ( U+cot 2- - U cot 2
da a ~2 (277r)1/

dbU =K+ eY/'ýl 6RR-

2 .1 dý + 2ot/2t_.•+. U _ cot-= ) * (2-107)
2 (2 v)
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From these expressions and (2-84) and (2-85), we see how simply the d'agonal

Uelements of d are related to the positions of the geometrical boundaries.

It is now straightforward to separate the S and S contributions to

U Uda and db. We obtain

dU e"/ 0 1 1 YA

d v cot (!• 6S+) - U+ cot (L - )1 , (2-108)a + 7 L 2 + 2 S+j

I U n/4 0dU e i cot ( as-)- U cot (-) aS (2109)
a- 2(2n) 1/2 2 S 2 S

i~~ ~~ e I n/4 1 +) ,1-0 •
d =+i/ v cot (ý • R)_-U+ cot ( -- d(-10

2(2
I-7/4-" ~~ ~ ~ o d6-••Iv .Uct•R) (2-111) ':2 ( / vcot(- -6_) - •cot 1 6)

t The S+ and S contributions to dU and d are
+ - 1 II

vi~/4 j-sin T(65++ 6R sin +~(6 +A,,f+) "212
dsn U(6 + +R +) R, (2-112)

_ /4 sin-t(6s+ 6R+) -U

i+ 2(2n) 1/2 -stn - 6+ sin - u + sin R+ sin = R 12 1+2 R + 26R+

ciil f sin -L( S_ + sin 6 S i( + ,R-)-dI- 2(2n) 1/2 sin ad s In - R_ sin •-LS stn 2-16R_ 21

25+ 2 2 R

1.

r/4 sin-• (dS) - sin a R(6S+ -621d(n l• U e v -6 + U+ 2- 1 R, (2-114)
1T+ sin 6 sin - 6 sIn - 6 sin 14

117/i"4. sin v ( 4 - 68_) sin 1• (6R -

2 2(2,)2- 2 2- s- T R 2-1
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The (6 * 6) terms can be evaluated using (2-79). Note that the coefficient

"of the step function U ts obtained from the Keller coefficient by aubatituting

1 for P. Using this fact, we can readily construct forms of the dc oorres-

ponding to the 'b" and "c" forms of (2-91) to (2-94), The symmetry proper-

ties of the d U as functions of are the same as those given In Section 2.2.3,.

for the d "I

When both 0 and 0slle outside the wedge, in the range a to Onr - a),

the forms (2-100) and (2-101) are probably the most useful ones for actual

computation. It may also be meaningful In some Instances to consider values

of (k Inside the wedge, because the fringe wave current alone does produce

scattering In these direcLions. For such directions, we can use (2-108) to

(2-115) provided we use the range of rngles

(2 "+a) r 98 -t a (2-116)

in the expressiors for the d and the range of angles

(2 - (2-117)

in the expressions for the d . This choice of ranges can be Justified by

symmetry considerations. In actual computation, (2-105) to (2-111) are

probably more convenient than (2-112) to (2-115).

It may be meaningful to consider values of 95 inside the wedge, but

this question has not yet been studied.

The cross-term d V is given by

U e ir/4
dx 1/2 , (2-118)

wblch vanishes when both faces are illuminated and also for incidence

normal to the axis. To verify (2-118), we calculate W,, (which

is a simple and straightforward procedure), use (2-47) to show that

and then calculate d from the V form of

(2-32). Since d U !a independent of 9s, we may use (2-118) for
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values of inside the wedge, and it Is thus not necessary to I
consider a decomposition of dx into S and S contributions.

A
(In order to carry out the decomposition, we would have to evaluate Kel at

the edge. This would be just an unproductive side issue.)

The cross-term d U does not appear in Ufimtsev's work (Reference 1).

This does not affect his results for two-dimensional problems, because a two-

dimensional problem Involving only perfect conductors can be reduced to an

equivalent problem with 0 for which d vanishes. Similarly, Uflmtsev's

results for backscatter from a three-dimensional body are valid whenever the scat- j
tering appears to arise from single diffraction at scattering centors, because

here t = 0 in the canonical problem which we utilize at each scattering center.

On the other hand, the absence of the cross-term can make an important dif-

ference In three-dimensional bistatic scattering problems and in three-

dimensional backscatter problems involving multiple diffraction or combined

diffraction and reflection.

UAs noted in Section 2. 2. 1, d is finite and uniquely defined for all J

9s when ib / . * a . To prove this, we refer to (2-108) to (2-111 , note

that the step function U is always unity when the arguments of the cotangents

are zero, and use the identity

= utan 1 6- tan !- 6
V cot (6) - cot . T 2n 2 1 (1 = -(*2).+ (6) 12-119)2 2 tan!6 tan Ed

2 2

to show that there is neither a singularity nor an ambiguity in definition when

one of the 5 is zero. Furthermore, it can readily be verified that 6S+ and

R+ have absolute value less than 2w for all values of Ot for which U+ 1 1,

and 6 and 6R have absolute value less than 2a for all 01 for which U = 1.
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Thus the terms of form U cot 6/2 have no singularities other than the one

at 6 = 0. It follows that the d *U are uniquely defined and finitt for all On

when 0 *na.

For the transitional or grazing cases 0= w * a, we would expect

some difficulty since, for a I-polarized incident wave, we do not even have

a unique separation into physical optics and fringe wave currents. Let us

U Uconsider the elements of d separately. The simplest to deal with is dU

We see by inspection of (2-118) that, for *3, 710, dUX is not defined for

0= n* a, values which in fact correspor-3 to discontinuities in d .

For = 0, d U vanishes for all values of O, including n' * a.

The most efficient way to study dU and dU is by means of the ex-
1+ +11

pressions (2-108) and (2-110) for d U and dbU and the definitions (2-71) and

(2-72)for6+ and 6 We find that dU as a function of and has a

rather complicated behavior near the points (0i, 0s) = (in + a, a ), (n + a,

2 ir + a), a behavior which is probably of no physical significance. For

a < n<a+a and n'+a < 0s< 2n +a, dU+isnotdefinedwhen 0 li+a,

U

Bs I 5i s d 1 defined for • = a + a, but t his exception is very ImnportantI

because it includes the case of backscatter. As to d I+ we find that it is

defined for 0 1 = rn + a in all cases but0 =aand 2 r +a, where we

encounter the 6Rme kind of complicated behavior as for dU
I+I
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In similar manner, we find that d U-and d have a rather complicated
• U

behavior near the points (O - a, -a) and (r - a, 2nr - a ); that d Is not

defined for (Or-a,. )when-a b < n-a or Tr- a s < 2n -a because
U

these values represent a line of discontinuity; that d_ is defined for s

= 1r-a;andthatd_ isdeflned for0, 7- v a and -a < 0s < 2n-a.

All elements of dU are defined for backscatter at non-oblique
Incidence,

s ~0 0s-91=r•a , ,1-0 ( 2-120)

and thus d is a continuous f,..iction of for backscatter.

"The fact that a dyadic element does not exist for a given pair of values

of and €S4 (ells us that our simple model of thp scattering mechanism is

not valid at or near this pair of values. A more complicated model must be used. '
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2.2.5 SIMPLIFICATIONS FOR A KNIE- EDGE

For a knife-edge[--e have

a 0, V = (2-121)

There is no range of for which both S+ and S_ are iltumtnated.

There Is only one transitional case,

i--" . (2-122)

"There are no angles inside the wedge, and both 0, and 0.

run from 0 to 2ff. Also

u =-u.~ (2-123)

The simplest and most important forms of the diffraction coef-

ficient for a knife edge are 1

117/4 sin -(n-s
-+ (2f si 2jf~4 ~ es ~(741 (2-124)(2 n + 1/,2 si1I -4i* 1 4 S fr2

du+ d U =1 d U 
(2-125)

d1/2e1/21 (2-126)
(2e7) sin4sI 7?Y_0 + Cos! fr I-~ ~ 1 1216

= d - 2 d1  , (2-127)

1U e rr/4 sin ' (2-128)

dx + (2 Yr) 1/'2

where the - sign Is used for 1 < ir, the + sign for > ir. We have

written d U in a form which emphasizes that it Is an odd function of
U

(f-O,) and an odd function of (. - 4)s), and we have written d in a

form which emphasizes that it Is an even function of ( ir - ) and an

even function of (rT - 45)



We readily see that dU is finite ernd uniquely defined for all •s

except when =s When 9Sd i[ uniquely defined for alt

values of s except 0 and 2 n, d Ula defined uniquely for -i

but not for any other value of and d IF. uniquely defined only

when I --0.

Other diffraction coefficient forms which are of interest include

I VA1eK e 1 (2-129)da 1/22(21? co j'I (0-2

dbK_~ eA•/41
K - (2-130)

2(2n) cos j• (€ i

K 1-7/4 n-/4 1+tane'"4 1 1'Cot 4 6 S+-j 1 (2-132)
da+ 4 (2 n)1/F2 4 (271 -tan

4

S eiF/4 1 e /4 1-tan

a -- 1/2cot -S_ T21 (2-132)
4(2it) 4(2")) 1-ltan L____

e|~~~~ ~~ a/tlr•' ~tn}

K1 e

in/4 1 ( _ t

d 2e 1/2 cost 6]R_ 1 + - 1 (2-135)
2(2n1 ) 4(2a 1+ tano4

dK sin sin cos 2 "io y (rr- 0_s )

dI 1/2 (2-136)(271) cos (1?-•t) +cos (-%
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I VA sin 1 ( )K e 2
d 1= 12 1 1 (2-137)

1+ 2(217) sin •-(r -qi) - cos ( -

ei /4 1si

2 (2??) 1/2 sin -(fA )+ Cos.(f )

d K e 2 (2-139)+72 1 1112 2(n

dKt _eff/4 Cos IF7-~d 2(2n)1/2 sin .- (rr -9)1) +cos -(F-9) (2-140)

dU ~ei/4 1 1 1
d --"1 1 1 sin 2"(•s-dkt) ' (2-141)a 1/2 cos -(s -l)

2(2) 12Cos)

with the upper sign used for < tr, the lower sign for p, > rr; and

d U re! 7/4 1
d12 (2 - S+ + U cot•-6 ) (2-143)a+ 2 (2 -r)122 4Is + 2S

dU_ e 1 1 1d 1/2 (1 cot - ' S- -U cot .6. (2-144)

2(2 U )1I 2 ( A cot L-6 R+*U cot L 6R+ (2-145)

= _ _ 1
a- 2 (2rr) )1/2 4R +

dbU etrfr/4

d21/2 (-cot--6 -U+ cot 1 6 (2-146)2(277) 1/2•2• 4 R- 2 2-)
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Alternate forms of (2-141) and (2-142) can be obtained by using the Identity

1x+ tan-
1 + BIK=cot C = 2 (2-147)eos x 1- sin x =cot - T) = - --- x •

"The Identity

cotU-c ot6 !ta 6 41

4• 2 2 4 (2-148)

can be used to simplify (2-143) and (2-145) when U+= 1 and to simplify (2-144) and

(2-146) when U = 1.

2.2.6 BACKSCATTER AND GENERALIZED BACKSCATTER

We shall define genpraltzed backscatter as the case in which

8 =(2-149)

Thus backscatter is a special case of generalized backscaLter for whichi - 0.

The results for generalized backscatter are no more complicated than those for

backscatter alone, except that the relationship of e to e is given by-II -II
-s = (Il t..U L-Lx (S., tL) (2-150)++

for generalized backscatter andI
e.. = e.. = t (2-150A)

for backscatter. We have
S Ie =-e -e (2-150B)-i -1 -1.

and

6S='-r , 2 !++a) -ip 1 3(- (2-151)
6 - S- 2 R+ 2 ' 2 R- 2G)

Also, since we are assuming that O4 is an angle outside the wedge, we have

(27-0)2> >a • (2-152)

The simplest and most important formti uo Lhe diffraction coefficient for

generalized backscatter are
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If/4 r BI 1(~+7 ,2-C L6 1U es]
dU + 1 - -U+ cot Y 61+

2 2 Ri.
+ 2(2ir)/ s4rv sin- 11= e~t/ v - 2 - U+ cot 1- 61• 213

1/72 si~in 1+tnvt + 2 11+ (2-153)
2(217) 2 1+ tan vItan (2v (-2 )

___7/4 s In R(6 11-)1
d = =- +U cot •- 6 R

1-1/2 £R2-J
2 (2n) ) sin v • sin 2kR_ (2-154)

iff/ r 2 2 1-

_ e 2 +U cot - 6R_

2(2 n)1/2 Lin vi 1+ tan vf2tan Y

and

-U cot 16 +-6 co
-cot t6) -2 cotw L 2 R+ 2 c Ri2(2-) 1/2 R-an 22 Ra2v• + 2 R-

177f/4

1/ 7 svn-vrr 2 r 2 + 2 R+ 2 "5)~
2(2n7) L-a v : ta v -6 - ct(215

The expression (2-118) for d XU does not simplify significantly for the case of

generalized backscatter. (For true backscatter, which only occurs

when = 0, dx Uvantshe.) XI
In (2-153) to (2-155), the first form can readily be found from

(2-112) to (2-115), and the second form can be found from the "b"

forms In (2-31) to (2-94).

We can obtain d i + , K, and d H simply by omitting the

terms in U+ and U_ from (2-153) to (2-155).

Other diffraction coefficient forms which are of tn%, -est are
d U d K 1c7/4 1 i-/4 vk,,

d d (2)l/4 v cot v2 21 1'--" V (2-156)
a a 771, 2 2 n)

dU da-d K 1 dK
Ul =U ~d K K d K- (2-157)a+ a- a+ a- 2 a 49
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e1 + U tan 1- tan (O•a) (2-158)

2(2")

U eifl/42d' +2 tan (0~-f)j (2-159)
11 (2/. - tan&Z tanIV(87-0 2

d U 2(2"7) L1 V 7 1tanv -qtafl iv(1-40t n()a ] * 2 1

We can obtain +K, d K from (2-158) to (2-160) by omitting

the terms In U4. and U.

We have omitted expressions for the d which only involve

using (2-151) In (2-89), (2-90), (2-110), and (2-111), and for d K and

dU , which are merely the sum of the appropriate d,+ and d with

no significant simplifications.

It Is Important to note that d IU and d 11 U are continuous functions j
of 0, specifically that they are not discontinuous as k passes through

the grazing angles ' = , • a.

For generalized backscatter from a knife edge, the simplest and

most important forms of the diffraction coefficient are

U e I374 1 et17/4 r. . 1
di U 1 1 - 2 e1- / ;l tan(.- ) (2-161)

(2w) 2

dU dU I U
d '+dd U lU (2-162)

d U 1 ,n14e 1 + tan( + •-) , (2-163)

d U =d U d U (2-134)gI+ II- 2 ,
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U,

and (.-128) for d which does not simplify significantly. In (2-161)aad (2-183), the

upper signs are used for b < w and th6 lower signs for > na.

Other forms of interest are

1 -7/4

d U =d K e 
(2-165)

a a 2(2 n)1/2

dU =dU =d K =d K =1 dK (2-166)
a+ a- a+ a- 2 a

K e r/ 1 (2-167)
dI 2(2")1/2 co2 (--68

,,r/4 1 + tan 2dK= e 2 (2-168)

4( 1/2 1- tan2 2

dI i/4 1-tan

U e 2_(2169

b- ____ ___r2 __ (-1

2(4 )2 L)1 2 + tan(2-171)2

1U= 7/4 1- tan) 2 U tan (2-171)

2 2 (27 rT7 1- tan 2

K e/4o( (2-173)

d 2(2K )1/2 cos ((2-1)

dK e (2-174)
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Ket /4 1 ; (2-175)
1/22d( .r I + cot •

and I w/4dK K e 1 +f/o 1 (n-Cos (2-176)

K e 1 (2-177)" 2(2nf/2 tan -i

K eIn/4 (2-178)

2(2ft) tan ( -• + 1
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UL THE INCREMENTAL LENGTH DIFFRACTION COEFFICIENT

3.1 THE GENERAL THEORY

3.1.1 DEFINITION OF THE INCREMENTAL LENGTH DIFFRACTION COEFFICIENT

Let us now define the Incremental Length Diffraction Coefficient

as a mathematical entity. We shall do so without reference to its

a;pllcations or to the considerations motivating the definition, matters

which we defer until Section 3.1.2.

We shall use the standard formalism for three-dimensional

_scat scat
scattering problems, in which the scattered field (E , H at a

point

er =ft es (3-1)
-- O-r

in the far-field region is written In the form

Escat =exp IkRi) scat 1 s x E scatE =- R F, = Z-r - (3-2)

where the radiation vector F is independent of R and normal to the

unit vector e in the direction of scattering.

By using (2-146) of Reference 4, we can write F as an integral of the

effective surface currents Ke and Km over the surface S of the scattering body,

F k e S x dS' exPI-Ike .r} (K' + r x K. (3-2A)
41 4-r J -r m -m - e

S

When the incident wave is a plane wave of the form (2-3), K and K are linear

functions of Eop., which we can write in the form
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Sq =E 0ON'2 for q~e, m.(-2B

On substituting (3-2 B) into (3-2A), we see that we can write F in the form

F=E 1D p(3-3)Jj

where the dyadic D is dimensionless and is independent of E and p.

Indeed, so long as we consider the geometry and composition of the

body to be fixed, D is a function only of the wave number, the direction

of incidence, and the direction of scattering,

(k;e- e I- --r -r "(3-4)

We shall call D the Three-Dimensional Diffraction Coefficient

of the problem. The notation D, with appropriate subscript, super-

script,or other modification, can also be used to designate an approxi-

mation or a contribution to the true value of D.

Now let us consider again the i-finite cylinder problem of

Section 2. 1.1, as illustrated in Figure 1 • We use thp, definitions

of Section 2. 1. 1 for the quantities t., n, _, t, 1, L, pf ex , f, which

refer to the cylinder geometry, and tho quantities e., P I ,e e I
-r -r -. L -eii '

p, f(3, and 0,, which refer to the incident field. But now, instead of

treating the scattering from the entire cylinder, we consider the scat-

tering due to the effective surface currents on the Incremental length

element of the cylinder which lies between the planes

2 d (3-5)
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The incremental element will scatter ir, all directions, so now I
the scattering direction e is independent of er . Nevertheless, once

we have specified a value ofer we can still define B3s, i r es

and es by (2-11), (2-13), (2-14), and (2-15) respectively, where now

Is independent of I3" We can also still define qs as the azimuth angle

measured from the x-axis to er "
" e~r

Let us assume that e and e have been so chosen that a far--r r

field region exists. (In the case of a finite cross-section cylinder, a

far-field region exists for all values of erI and ers. ) The far-field

scattering can be described In terms of a radiation vpctor d F , which
0c

we can write In component form as

dF = dF es +dF es(-6
-- --. , F.Hl -I (3-6)

This radlation vector can in turn be exnressed in terms of a Three-Dimensional

Diffraction Coefficient d D by

d FOc =E 1 (3-7)

which is of the same form as (3-3).

It is clear that d D is a linear function of the length dt of themoo

incremental element, and thus we can write

d0 e-i r/4 kd dt (3-8)
(2) I)1/

d_= e [tn1/2 kdldt
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where d is a dimensionless dyadic which describes the scattering

properties of an incremental element. The formula (3-8) holds

for that particular element of cylinder which is symmetric about t = 0.

For any other element, we must Introduce a phase factor. (See (3-12).)

We shall refer to tho quantity d as the Ienremental Length Diffraction

Coefficient for tho cylinder of interest. If we consider the geometry and composition

of the cylinder and the orientation of the axis to be fixed, then d is in general a func-

tion of the wave number, thp direction of incidence and the dirpction

of scattering,

d = d__(;/t S,'•''s (3-9)

For - the Incremental Length Diffractlon Coefficient is equal

to the Two-Dimenstonal Diffraction Coefficient of Section IL. This fact, which is

verified in Section 3.1.3, motivated the choice of normalization factor in (3-8)

and the use of the same symbol d for both types of diffraction coefficient.

From (2-6) and (3-6) we see that 0 can be written In component form

using (2-23). But now, of course, e a and e are no longer constrained to
-- It -

both form the same angle with the t-axis.
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The notation d, with appropriate subscript, superscript, or other modtfication,

will also be used to designate an approximation or contribution to the true value of

the Incremental Length Diffraction Coefficient.

3.1.2 APPLICATIONS

We shall now motivate our definition of the incremental length

diffraction coefficient by briefly discussing some important applications.

The most straightforward application is to scattering from a

cylinder of finite length. Let us assume that the cylinder is sufficiently

long so that there is no interaction between the two ends. Then we can

consider the total effective surface currents on the cylinder to be the

sum of the currents K eo, KM,, which would exist on an infinitely long

cylinder plus correction currents, both on the end plates and near the

ends of the shaft, which are independent of the cylinder length. In

many problems, the end effects are negligible.

The contribution to the scattered field due to the currents K

and K can be descr;bed by a Three-Dimensional Diffraction Coeffl--m'noo

cdent D . We can readily verify that D is related to the Incremental
W 00 moo

Length Diffraction Coefficient d by the simple fcrmula

D~,O=exp-k(j +e I E*0 r 1 -I kT ein X d (k; j3, 0t1; 0S, 98) (3-10)= P er -r -of (2n)1/2 X

Here T is the length of the cylinder, r is that point on the axis of the

cylinder which lies halfway between the ends, rnd

X =kT jsinf - sin/ (3-11)
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Is half the phase difference in radians between far-field returns from tha two

ends of the cylinder.

The Important problem oi scatering from a thin etraight wire Is of course

a special case of scattering from a cylinder of finlie length.

Another class of applications Is to scattering from a curved

rod, which we can define as the body produced when we bend the axis

of a finite cylinder but keep the cross section perpendicular to the

axis constant at every point of tle axis. If the radius of curvature of

the bent axis Is large enough and If there is no significant Interaction

between parts of the cylinder, then we can assume that

(1) The total current on the shaft can be approximated satis-

factortly by the sum of the currents K eoo, Km, which are

found from the corresponding infinite cylinder problem

plus end-effect currents which are independent of the length

and curvature ot the rod;

(2) The compression and stretching of the surface when the

cylinder is bent caii be nwglected.

Because of the second assumptlin, the contribution to the

scattered field from the currents Ke, K can be approximated by

the three--dimensional diffraction coefficient I
-I n7/4

D e7k dt'oxp I-tk(e_ s (3-12)

(27f)1/2 + er ) " I d
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Here t is the ?ength perameter along the axl, r is the position of a point on the

axis and is a functioa of t, and the Integration is taken over the length T of

the axis. The diffractiorn coefficient 4 Is a function of the five arguments of

(3-3) and also of the unit vector L along the axis. In turn, t and the arguments

and are functions of t.

Frequently the integral of (3-12) can be approximated satisfactorily by

stationary phase techniques. In many of these cases, the only significant

contributions to the integral come from the neighborhood of those points on

the axis at which s= 6. Thus many curved rod problems can be solved

adequately using the two-dimenstonal diffraction coefficient of the corresponding

cylinder. This was done for the curved wire problem in a recent paper by Keller

and Ahluwalta (Reference 6).

The formula (3-12) can also be applied to curved rods of slowly varying

cross section, in which case d is a function of the local cross section as well

as of the axial direction and the angles of incidence and scattering.

One of the most Inmportant applications is to scattering from bodies with

edges, both wedge-like edges and rounded edges. Consider, for example, the

problem of scattering from a flat plate. If the plate dimensions are large

enough compared to the wavelength and if the directions of incidence and scattering

are not too close to grazing, we can approximate the total current on the plate as

the sum of the current predicted by physical optics plus the fringe wave currents

associated with the edges. We have shown in Section V of Reference 11 how

to calculate the scattering due to the physical optics current. The scattering due

to the fringe wave currents is calculated using (3-10) for straight edges and

(3-12) for curved edges, with d replaced by the Ufimtsev diffraction coefficient

U. In Section TV we use this approach to solve the polygonal plate problem.
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The idea of breaking the solucion up Into a physical optics term plus fringe wave

scattering terms Is, as we have noted in Section 1, also basic to the solution

of a large variety of other problems.

The original three-dimensional body work of Ufimtsev (Reference 1) was

limited to problems involving curved edges for which the only significant

contributions to the edge scattering come from the neighborhood of points where

s= $B Thus good results were obtained using two-dimensional diffraction

coofficlents.

3.1.3 THE DIFFRACTION COEFFICIENT AS A FUNCTION OF THE EFFECT1VE

SURFACE CURRENTS

A A
Let us use (2-27) and (2-28) to define surface current dyadics K and K

on the shaft of a cylinder, and let us also introdchce the dyadic function W which is

A A
related to 1 and K by (2-30) and (2-31). We can then show that the Incremental-e = m

Length Diffraction Coefficient d for the cylinder is given in terms of W - and
A

thus ultimately in terms of K and = - by (2-32). The proof is obtained by

applying (3-2A) to find dF. for an incremental length of the cylinder, using
A /

(2-27) to express K and K in terms of K and K respectively, and then
-e In = e

tinding d from dF cc by use of (3-7) and (3-8).

The expression (2-32) can also be used to calculate the IL ssociated

with an approximation or contribution to the effective' surface currents. Furthermo'" iii

we can verify by integration by parts that (2-32) is still valid when W is replaced

by the W of (2-33). Care must be taken, when calculating W for a surface current

contribution with disoontinuities in the K to acoount for the discontinultiea

by i.chlding appronriate Impulse functions in the 41d/al terms.

To verify the in-,portant fact that the 2-D DC is equal to the ILDC for
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e = , we merely note that both are given by (2-32).
* $ *

We always work with surface current dyadios for which the symmetry

conditions of (2-34) hold. As a result, Wand W have the symmetry properties

given In (2-35) and the ILDC j has the symmetry properties given in (2-30).

We should keep in mind that the true infinite cylinder currents are not

the true total currents on an element of a finite cylinder or curved rod. TIds is

why we have used the subscript x when we refer to infinite cylinder currents

in Section 3.1.2. Of course, in many cases the tnfirte cylinder currents are

a very good approximation to the true currents.

3.1.4 SCATTERING INTO THE FORWARD AND BACK CONES

We shall refer to the cone

/3s =P (3-13)

as the forward cone and shall refer to the cone

is, =- 13 (3-14)

as the back cone. For /3 = 0, they are the sa-ne.

Scattering into the forward cone can be treated using only the

two dimensional diffraction coefficient. An important special case is

forward scatter, for which

.0s -oil = I F (3-15)

Scattering into the back cone includes the extremely inroortant

special case of backscatter, for which

61



00s = 01 (3-16)

Let uq now consider how scattering into the back cone is related

to scattering into the forward cone. Using (2-31) to (2-33), we readily

find the expression

dq(/3;- 01) =dq 8;i •) + 6 dq (,81) sin j6 forqq jL,•L 11j, 11 1! (3-17)

where

d(i) e-Iff/4 COS Aqi k C Pexp {-|kcos~i er .p' }6W,
6d(13) ei 1/2 -kJL Ar - q (3-18)

2 (27?

and

6 W KA
6W j *=2(e'-Kmj 1

W Zj = 1 , ! (3-19)
6 W , Sj= ( .. _) Z ° K et

Here we have omitted those arguments of d which are not pertinent.

We see from (3-17) that, fo": I3 sufficiently small, the elements

of the diffraction coefficient for scattering into the back cone can be

approximated by the. elements of the two-dimenRional diffraction

coefficient.

3.1.5 THE PERFECT CONDUCTOR CASE

The true infinite cylinder currents on a perfect conductor satisfy

(2-38) to (2-41). We then readily find from (2-31) and (2-33) that, for

a perfect conductor,
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Wit (k; 't; /3S8 0;1) =W1, *Ok cos a 1; ;I) CoB a (3-20)

W1 (k;3;, O 'i) =-; ) stn Ma coo' -)

+, ~S Lsn let o 1  Z I Z0 i 1jjlkO O ,q Pt;, ( (3-22)

VIII, (k; 01, 0t; goS. s ) = W111 *(k coS o8;|;i )coiBl (3-23)

and

S= W q q - i, i i , ,III , (3-24)

W--I(k; 63 , , /3w, +s;i) = WT,, ( k cos ,i; f) h (,8t, ) (3-25)

where

* AS

W 1 ± (K ; Ls' -r" -_ ZKej. ; 0, 1; ), (3-26)

, A
W11, (k ;;1) = Z° KeV (k; 0, (3-27)

wl I * I1 a A (3-28)

and

an 1+ Bin $8ssn/31 (sin 13s-sin )

NOi, go) tan Oscos jR, - tan O$los C1B osi t3s sig

1 + sin_ 3sn_8 1
=2 cos C" at Cos •- ( + l) sin L- (,s- 6i) . (3-29)

, By using (3-20), (3-211, (3-23),and (3-25) in (2-32), we can

readily verify the important Identities
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dq(k;Of.' 0; is', 08) = d (kCos 01; 0, , q= ,lil ; (3-30) q

~1,;13k 8, 08) = 0 (3 -31)

dil (k; Pi, €0; B Cs) = d11J (k cosB $1 ;u•k1*, ;R s) h (01, as) . (3-32)

Here

-i n/4e2 1 k Lk cos (k; ýy 1 (3

and 3 * is defined by

cos * cos(3-34)

It is clear from the right-hand side of (3-34) that we have to let cos (s*

take all positive values from 0 to co, and this means we must allow

imaginary values of Ps *. We can let S range either through all

positive imaginary values or through all negative Imaginary values. It

does not matter which branch we choose, since 1s * enters into the

expressions for the d only in the form of single-valued functions ofq

Cos 1a *.

The most important information contained in (3-30) to (3-32) is

that dIII vanishes; that d 1 1 and d il can be expressed as functions of

the four variables k cos 01 ' cos 11"' 1 and Is Instead of the five

variables k, Oil s F and a fact which can be used to greatly

simplify the computation of a diffraction coefficient; and that d1 i I can

be expressed as a function of four variables times a standard geometri-

cal factor.
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When 0. = 13' (3-30) to (3-33) reduce to (2-48) to (2-50).

For scattering into the back cone, we have

dq (k;, Pit 5))= dq (k cos 0,Ofb1;O, 0- q0=10, ,Ps ; (3-35)

d1 1 1(k;Ol, ( 01 s 0 (3-36)

dl I (k; 0 t 2 d (IC (k cos I; A;0, 0.)sBn (3. (3-37)

These formulas tell us that the dlagonai siements of d for scattering

Into the back cone are the diagonal elements of the two-dimensional

diffraction coefficient. Thus, in the perfect conductor case, there Is a very

close relationship between three-dimensional backscattering problems and I
two-dimensional problems.

We have been working thus far with the true Infinite cylinder currents on

a perfect conductor and the resulting 4. Now let us consider approximations and

contributions to the current.

Following the plan of Section 2.1.6, we will consider only approximations

and contributions which satisfy (2-38), (2-39) and (2-41), but we will not

require that the approximations and contributions satisfy (2-40). These

approximations and contributions will then clearly satisfy the equations

(3-20), (3-21), (3-23),and (3-24) for the Wq and W , the equations

(3-30) and (3-31) for the dq, the equations (2-48) and (2-49) for the dq

when $s = and the equations (3-35) and (3-36) for the d when

2 = �"~. On the other hand. the contributions and anproximations I
may not satisfy (3-22), (3-25), (3-32), (2-50), and (3-37) for W

W I'andd
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In place of (3-22) and (3-25), we have the expressions

W 1,1 i (; me, 08; ~ , 1•J

A Zo.•s..(k_ . Z i0 e,,i oB a;0, CO;f)hi" Bsco"/3  (3-38)
=z° Ketl,; 01. 95j;1)o oz0k01k080;0 6;f I

and

1+ s1nBsin~1  1 I 1 s•
* ~coo 1 (0 +e13t) siti

=2 W ,,t (k cos/ 3 t; 0it11) Cos - s 2 8 2

+ WOji**(k; coo' 1) COB , (3-39)

With
*,

@ ,• (k; 13, 0t; 1)1

A 1 (kcos 16; 0,0t;j)stnPL. (3-40)

=Z o Keti (k; 16, 'k;)+ 1k costi al o0  e/i.I

Note that W, * is an odd function of Pit

, (k;- t €j; 1 = w,1  (k;fl 0t. ;) . (3-41)

It is readily seen that (3-38) and (3-39) reduce to (2-52) and (2-53)

respectively when/3 s t" .

The equation which replaces (3-32) is

** 1+ sinP S sin$9I

III (k; St1, 912 d1 ,* k cosP 1 ;0 1; 8 a 1oocof 1

+ d1  (k;1t9•;Os., 4s) 
(3-42)
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with d * defined by (3-33) and

e- 11/4
-k cos) fLd1'exPj - I k cos-r 'e a V) (3-43)2 (2',w)1/ 8 r

Note that d** is an even function of • and an odd function of i,

d"1* (k; 6t' 9i; -/38, 0s)

dl =-d,* (k; - •i' 1 1; :L .0,56) !-= dl* (k; Ot /3,di 0ls' ). (3-44)

Though d* is in general a function of five variables, it can be quite simple

to evaluate in practice. For example, in calculating the fringe wave ILEDC d=, the

integration over I' indicated in (3-43) bpcomes trivial because W. ,*U Le an impulse

function at the edge.

For f3s =31, (3-42) reduces to

dill• (k;Rg,/i, 0I;fl ,) = d~l,.L (k;131, 0,;131, 6S) , (3-45)

and for /3s=-O3,, we have

Sa,•;~i •L• •,.s>- -2 dl *( cos[3;d),; 0, or)sinIlil

+ d (k;/301, t; 3L, 0 5 ) • (3-46)
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if we consider the physical optics contribution to the surface current, we find

that the corresponding d11t vanishes for backscatter. Ibis result, which Is a

special case of the general observation that physical optics backscatter Is not

depolarized, can be obtained by using the physical optics surface currents In

calculating d,1 and di4* and then applying (3-46).

3.2 THE EDGE DIFFRACTION COEFFICIENT FOR A PERFECT CONDUCTOR

3.2.1 THE GENERAL CASE

Let us now return to the problem of Section 2.2 and Figure 3, scattering

from a perfectly conducting wedge whose two faces are Infinite half-plaues.

U
We will concentrate here on the Uflmtsev ILEDC d , which describes the

contribution to the scattered field produced by the fringe wave current. We have

Udiscussed in Section I how I is used In solving scattering problems and we shall.

give an example in Section IV.

U
From Section 3.1.5, we see that d 11 vanishes. Thus we can express the

incemntl enthdUU U UIncremental legheIn terms of three elements di , d It, and d X by means

of (2-96), an expression we originally wrote down for the two-dimensional

U U
diffraction coefficient. Furthermore, we can use (2-99) to express di and d 11

each as the sum of a + contribution from S+ and a - contribution from S_, and we

U Ucan use (3-42) to express dX in terms of dx* and d**. We thus find that U can be

written in the form

_U (dU U a• I _ (, U dU) e t .
d = (i ++ dL1 .)- + (d I,++ d jk)e,1+ sin CsIn) _9 •).d, • ,
+ 12 d• 1--slns CO$" 1  CS•{ s + in 1 s I 1-i~i 3-40A)

+os co Cos -(on +A) sin (13 +0 + d* (3-6A

Let us now cvaluate the stm _calwr d which appear In (3-46A). In order to

express these quantities In a convenient and compact form, we introduce two pairs of
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parameters, (V,, lk+) and (V., it), which are defined In terms of the geometry of the

problem by

V-cos/3s CoB (W +C1) - Cos~ Cos (0 Co)

v+: Cos- u8 ,A (3-47)

cos4  Cs
Cs18 -[CoscosI3* 0 .1. (3-48)

Since cos IV can take all positive values from 0 to oo , V+ and V will
both take all real values from - oo to + r . if we consider only values
of outside the wedge, that is, a<_01 <(2 r -a), then the range of

both '+ and d'_ will be

2 (it-a) 2>• >_ 0 (3-49)

We also define parameters v+, v-, such that

v=cos V , (3-50)

with the branch of cos V so chosen that

v =,-¢0 ; V =cosý for IvI:--1

v iw, w >0 ; V =coshw for V>1 (3-51)

v n-iu, u >0 ;V =-coshufor V<-1

here we have suppressed the subscripts + and - on v, V, / , w and u.

We now define functions f and g such that

I9
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f(V, 0 )= I2)1/2 (dx exp ItVx I} B(X., ) , (3-52)

e-t T/4 V;(

(2Vv e 11 d:g pIx (3-53)

Here vB is the complex conjugate of the function v B which Pauli uses In

Reference 9 to describe the fringe wave current (Pauli's paper, published

in 1938, does not, of course, use the term "fringe wave current. ")

and

Bv = dv B(X4I /~ (3-54)

We also define

f+ =f(V+, 0+) , f = f(V_, ,i)

(3-55)

9+ =g(V+, +) = g_=(V, 0)

Starting from the general results of Section 3.1.5, we can show in a

straightforward manner that the dqU are related to f and g by

dU+ fsitnl'w+'a - 0I= f+ sin (O.-a), (3-56)

d -U= - f-sin w-'a)-Os- f - f sln( Os+ a), (3-57)

dU cos /3 (3-58)
d U cosC*

•+ =++co/

__Cos___ (3-59)
-=g- cos(33 =g
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and that

dx = d Ili(k coB ~3 ; 0 1; 018 )=If 008 t(W+CV)-O~j-f coB j(W-arO pcoo0~

Here the arguments (k; /3 i, f; /i,•) are tce be understood on the

dU in (3-56) to (3-59). The range of •. In (3-56) umd (3-58) is

COO+a)- f _ os (0 + )'fi8 (3--60)

and the range in (3-57) and (3-59) is

(3 -63 )(2' -a) - - -(

It now remains to evahuate f and g in closed form. The evaluation for

- (2 V -1 a (3-64)

can be carried out by matching (3-56) to (3-59) against the formulas

of Section TI for the case )3 =/s . In this manner we obtain

f(V, /) e- ¶I7/'4 LsVnVv , sin v -65)/(2 w 1/o v vcos5tf os U os v - cos (3

and
Ii -/4

g(V,) = e I !/ vstn vo• sOl B n¢ Vj(-6(2gu) 1/2 V -cos -v v cos v 0 cos v -coso- (3-86)

where t' is defined in terms of the wedge half-angle a by (2-58), and
U is a step function defined by
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U(0)=I forn 0'.0 -0
(3-67)

undefined for 0 0

= 0 otherwise

It is useful to note that U is related to U÷ and U of (2-102) and

(2-103) by

U(W- ÷) = u4 ('_)1  , (3-68)

(3-69)U(¶T- U-01)

The apparent singularity of f at v 0 and the apparent sing-

ularities of f and g at v = d0 are removable. Specifically, we have

f1 e 1 w / 2 )for Viv, (3-70)f~l,1)= 2 v U(o - 2 1 }

2(2r) sin sin 2-
e1 /4 otv-ct

f(cos Vkd')= 2 /2 scotn V cot for Tr-0, (3-71)

2(2wr) n'
ifl/4

f(1,0)= e2 (1- V2) 3-72)
6 ( 2 12 )

and /
g(cos ecot - COt for/ V c V 0 (3-73)

1/2 L
2 (2 Tr)

g(1, 0)= 0. (3-74)

Furthermore, we see that f is discontinuous in 0 at V =

and goes to infinity as V-_- -1 for arbitrary •/. On the other hand,

g is continuous in V and C' for IVI< 1 and goes to infinity only for the case

(V, C') -- (-1,1?).
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Rt has been established that f and g have no singularities for IvI> 1,

but f and g have not yet been evaluated rigorously for this range of V
Preliminary results indicate that (3-65) and (3-66), with v defined by

(3-50) and (3-51), are probably still valid for IVj>i. in terms of the

variables w and u of (3-51), we would then have

i w/4

f(V, e)= et)-/4 I V sinh vw sinh w""A(,-)="I cosh v w - co 5  -U(wr--) cosh w-cosi 1 (3-75) t
2 et) 1/2 IN w s I • sin7- W CsVb O I

g(V, 0)=_ - 1 (3-76)
(2 r )1/2 Icosh vw -cosu , cosh w -cos , for7V) and-

for V >" 1, and

e 1___"/4_ 1 p (sin Yu cosh x, u - I cos V17SIMh Yu1)(2fTr) 1/2 8 7 (cos vncosh vuu+ I sin v sanh vu)- cosouv

sinh u (3-77)+ U(Tr'0) "cosh u + cos '(-7

i r/4 n

g(• )= t •.)1/2 1 (cos vincosvu + Isin vn'snh vu)-cos vO

.sin •I ] (3-78)U"-'cosh u +cos •

for V<- 1.

Let us now turn our attention from the functions f and g to the

diffraction coefficients. We find that both dU and U will be infinite

for

fi= ': (3-79)

that !s, for an incident wave which grazes the edge. This is to be ex-

pected, since our simple model of the scattering mechanism is not -

adeqiate for th!s case. Also, d i+ Is singular when

t COS )cos Cos 18(80)
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and dl!- Is singular when

='- of, CoB (9 +C() cosa (3-81)

What (3-80) tells us is that, for grazing incidence at obliquity

angle fi and scattering at any obliquity angle i3s such that

(3-82)

there exist two values of the scattering azimuth angle s, one

in the range

(3-83)

the other in the range

(2 w +o) Is > ( -2- +O) (3-84)

for which d is infinite. When s = • , the two critical values

of , are a and (2 ,r +a), which is consistent with the results

observed in Section 2.2.4. Again, a more sophisticated model of

the scattering mechanism is necessary in order to handle the critical

cases. The interpratation of (3- 81)is completely analogous to

that of (3-80).

The ccefficient d + is singular whenever

COS (s-ax) cos /s=cos w3 with 10ss8, I , I3s)! "

and -vnen 8

n�cas 2 Q= 2+a'i " (3-86)

In the case of (3-85), the singularity is caused by the sin v terin In

13-651 going to zero, an effect which is cancelled by Ehe sin (.s-a)f

term in (3-56) when I/isi In the c; se of (3-86), we have a higher

order of singularity becaust
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sitn v=0, cos vv-ecosvP = 0, and cos v - cos P -0, (3-87)

and we find that the behavior of dI+ is quite complicated near

the singular points.

We also see that d, is discontinuous for grazing incidence on
S+, ++

Tr +• o .(3-88)

exc.pt when

(a) s (3-89)
or

(o)o.=a and j$5 W/3i I (3-90)

or

(c) (2fv +a) and (3-91) I1.
Uin which cases d + = 0. (Even If (3-75) and (3-77) should

prove incorrect, physical considerations tell us that the discontinuity
exist forIVI 1.)

The behavior of dU is completely analogous. it is singular

when

cog ( +) CF) /3 cobsCOS with1,6l.81/31(-

and when

It is discontinuous for grazing incidence on S_,

t) =T" a (3-94)

except wher,

(3-95)
a) Is = w-y
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or

b) =- ftnd~f~O (3-96)

or

C) j -2' -4 aTidI/06ý'1/311 (3-97)

"Itese raoudts are consistent with those of Section 2.2.4.

A morc, sophisticated model of the scattering %nechanism is needed

to handle singular, near-singular, and discontinuous cases.

The coefficient d x is discontinuous for grazing incidence un

either S+ or S unless we have both • =3• = 0 and 0s * -a,

2 'y- a, 2 n, + a. I is singular for an incident wave which grazes

the edge,
/3, = , (3-98)2

and whenever

co8(Q5-a) cc's =3cos .i(3-99)

A more sophisticated model of the scattering mechanism is needed

to handle singular, near-singular, and discontinuous cases.

3.2.2 SIMPLIFICATIONS FOR A KNIFE EDGE

For a kr.Lfe edge, we have

*L
a=O, V=V.+ =V =Cos~ cooB(w- 02 -4p

a=0, wv+ =v_-oo•s* 0- ' 2w-=1, (3-100)

and (3-56) to (3-60) thus become

dU=2f(V, i,) stn (w-%•) (3--0)

d U + = = d -d U -1 2

I j (3-102) j

dU dU =1 dUd + =d 2 1 =-(3-104)
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dx = - 2f(V,(b )COS cosso = - d cot C os (3-105)

In obtaining these results we have used the fact that, for a knite edge, we have

f (V, + - - f (V, ,u.), g (V, 0,) g (V, _p). (3-105A)

For IvI < 1, we obtain from (3-65) and (3-66) the expressions

e'1 1 1
f (V, ) (= T 10/2 1 e 1 c4 (3-106)

4 (2 coo I (v sin) Ca222

t /4 Cos L7-0(3-107)
g (V, 2(2 e )1/2 si 1- 2 o t- v317

-oil 2

We can express thesc results in terms of V using
1+ V1/2•

Cos L-v-- 13-a08)
2 ~2 (48

if we assume the validity of (3-65) and (3-66) for IVI >1, we1
find that (3-106) and (3-107) still hold, with cos L v given by

(3-108) for V >1 and

COS V = I r for V <-1 . (3-109)

3.2.3 SCATTERING INTO THE FORWARD AND BACK CONES

For scattering into the iorware -ine, M3 = f(i3 the Incremental

length edge diffraction coefficient redu,.-o to the two-dimensional

diffraction coefficient which has already been discussed at length in

Section 2.2.

Fur icauiteuing inLu ihe back 'tone, P.= -=pi we nave, from

43-35), (3-45), (3-46), ar.d (3-6uj),
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U(k; . s e U .; ea et

*dU(k, i,4i; "e (3-110)

with

dU ,, t;., d ,,;,) - 2d Aisnl (3-111)

(x(,•)=-f(Cos v+, 0+)cos (0s -) + f (Cos v_. q,_) Cos (0 a + a),(-12

and

v: = o.a)-_ (3-

The unit vectors e , e - e are the same as for scattering into the

forward cone. Thus we see that the dyadic form of the incremental

length edge diffraction coefficient for scattering into the back cone

differs from the result for scattering into the forward cone only in the

definition of e and in the presence of the d * term.
UX

It should be noted that d1  (k; ti3l t; Olt q)s)andu U
dg, (k; 0t' 1*, 0.')are actually independent of k, thatdXU (k;01, 00•; 0)

is In actuality a function only of 0, and O, and that dU (k; . I;-I1, 06))

is In actuality a function only of OIV •'' and 's" The full complement of arguments

has been used to stress the similarity of the two-dimensional results

and the three-dImewsional back cone results.

It should also be noted that, as we can eseo from (.1-561 and (3-57),

the f(cos vt, k&*) of (3- 112) can be expressed tn terms of the values for

oi l 3 of d 1+U and d. . Thus d U * can be expressed in terms of these

two functions. We then see from (3-110) and (3-111) that dU for scat-

tering into the back cone can be constructed from the Two-IDrmeSs t°onal

Diffruction Coefficients d U dU d U a&M d U.

1+ 1-' 18
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For scattering from a knife edge, (3-112) becomes

eiw/4 Cos 1r s
d1 9 1,2 1 sin-" ot 08 (3-114)

(2) Cos 2, t stn

with the + sign for t < ,- and the - sign for 4>, > 17.

3.2.4 BACKSCATTER

For backscatter, we have (1

0, =0s = 0' . 0= "/3 = ý3 ' (-115)

which is a special case of scattering into the back cone. It is convenient to

define unit vectors er, e1 , and e such that

s=e e e =-e =e I ea e =e (3-116)
-r -r =er, -=. i -e =e

we can then express dU in the form

dU -d U ee +dUe, e,_ - dU (3-117)

with

d U e I v/4 2 v 1+ 1(3-118a)
2(2.r)1/2 sin 1 + tan v 2 tan v (2 w -) 1 + tan P Mtan" v

-U+ tan (- a) + TU_ tan (0+ a)

eI n1/4 Ysnvf(• 1/ 1'sin Y. C- -2 (.,-,

+ - U+ tan (0- a) - U- tan (0b+al, (3-11 Pb)
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t ff
du_ e"" 4Uta UtaiO )

2 (2 s1/2 Sin ptr I- tan + UR tan (2-)-U tan,)+
2 2(3-119a)

_ et ir/4 1-' os -

(2w)1/ 2  V"snvi- cos ,ir, + cos 2 P(""QT)]

J .ju+ tan (0-~ a) - U_ tan (0 + a)]} (3-119b)

U e Inv14 2 cot (- a)
(2 1in 11- tan v- cot P (n+a-o)

+ cot -a) sin ( . 3-120)
1 +tan P~cot. Y(f -a-0)-I

U
For a knife edge (3-117) still holds, with d now given by (2-161), d

I
by (2-163). and dx by

d ~e ' o~sn
d U7 2 I r4 co i (3-121)

x (2 w)1/ 2

To verify (3-118) and (3-119) and to justify the use of (2-161) and (2-163),

U U
we first observe from (3-110) that d. and d U are the same as for two-dimensional

generalized backscatter, which has been treated In Section 2.2.6. We then obtain

(3-118a) from (2-153) and (2-154); (3-119a) from (2-155); and (3-118b) and (3-119b)

from (2-97), (2-156), and (2-158). To verify (3-120), we start with (3-111),

U '
use (2-118) to evaluate dx (f 1 3 ,) and (3-112) to evaluate d•, and note that

(3-112) simplifies for backscatter to

d~ d U jdk;A~,);/3O)Cct (O-Q+ d k 9 q %0 cot (0 + a)1 (3-122)
+ U.

with the d U given by (2-153) and (2-154). To verify (3-121), we just substitute

the knife edge valuet v into (3-120) and use standard trigonometric

Identities



IV SCATTERING FROM A PERFECTLY CONDUCTING

POLYGONAL PLATE i

4.1 GENERAL FORMULAS

Let us now develop formulas for far-field scattering from an N-sided

perfectly conducting polygonal plate which is illuminated by the incident plane

wave of (2-3), A typical plate geometry is shown in Figure 6. To avoid a phase

factor which has no essential bearing on the problem, we assume that the origin of

coordinates lies in the plane of the plate. Following Section V of Reference 11 we

make the following definitions:

S indicates both the illuminated side of the plate and the area of the plate;

n is the unit normal out of the illuminated side;th
Pn for n = 0 to N, is the n corner of the plate, with n increasing In the

counterclockwise direction as seen from the +n halfspace and with

PN = Po; (4-1)

r is the positton vector to P and is normal to n;
-n n

an Is the angle of the corner at Pn

Cn Indicates both the edge running from Pn-1 to Pn and the length of the

edge, and

C = CN (4-2)

7 -nis the unit tangent to Cn, directed from Pn- 1 to Pn

Cn Is the center of Cn, so that

- - -c 7 ; (4-3)
-Cn2 '1_ + r~i n) n1+ n- -n 2 n -n

is the unit vector along the projection of the sum vector (a + e

(which bisects the bistatic angle) onto the plane of S, so that

-2•- . x[e(E+r e_ ) xn_, (4-4)

where the parameter -r is given by
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1 + e (4-5)2 -• r -r

and lies In the range

1 > Ž0; (4-6)

Yu is the angle measured counterclockwise from e to 1 sn' go that

cos Y =e. I . sin ne ; (4-7)

Sis a parameter proportional to the phase difference between far-field returns

from the two ends of Cn and is given by

Y TkC oy.(4-8)Yn n cos Yn.

We note that -r = 0 for forward scattering and for all cases in which n

bisects the bistatic angle, including backscatter at normal incidence. The quantities

and Y are not defined for 'r = 0 but this fact does not lead to any difficulties.

If we consider the edge Cn to be a segment of an infinitely long edge, then

we can define values of j8, s , s' and 0, on C Indeed, we readily find that

stn in =er. in- I sin qn e-rs -n1 (4-9)

with •nand As in the range - 17/2 to nf/2, that

Cos ý in =os r S r "

with In t 5
w'>(•btn > 0-(-)

because we have specified that n points out of the illuminated side, and that
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I >4n>O for e n >O0

Cos 10n= co e - - -u. 7.) {x )with '.(4-11A)

2ri~j >ffrfor e ~.n<Oan -r -

-i'

Furthermore, we can define unit polarization vectors e in e 11n

and e by using (2-6), (2-14), and (?3-15) with t replaced by in'

If we neglect edge interactions and also neglect distortion of the fringe

wave currents near the corners, then the field scattered from the plate can be

represented as the sum of the physical optics scattering from S plus the integral

around the edge of the Ufimtsev ILEDC with proper phase. weighting. We can

express the radiation vector F in the form

F =E D . , (4-12)

where the three-dimensional diffraction coefficient D is the sum

D=D P DU (4-13)

of a physical optics coefficient and a fringe-wave coefficient. If we Introduce the

notation

a (9%, p; e-r, e-ri; k) , (4-14)

with I• a real unit vector, to designate the radar cross-section (RCS) seen by a 1
scat

linearly polarized antenna which is sensitive to the component of E parallel

to , then we have

v=_4" (4-15)

"Thus the problem of determining the RCS reduces to the problem of determining

=D or, equivalently, determining both DPO and DU.

UThe fringe-wave coefficient P can be represented either as the sum of

N edge contributions or as the sum of N corner contributions. To obtain the edge
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contribution form, we use (3-10) and observe that r corr-esponds to r

T corresponds to C., and X corresponds to N because

2 rcos 'Y = 2Te 7 Sin gi.1 s n~ - SIne (4-16)
- n rr -n an

We thus obtain
-t ff/4 N-1

DU = e -si2 nd k E exp.1-21 ke Sin U, (4-17)
S(2 Ir n=0 nIn T

where d the knife edge Uflmtsev ILEDC for C . From (2-96) we see that

d U has the three-element formn dj U se i Ue a i U s i
dU d e Se +d e (4-18)

n i n -in -in dXe-n -in ln ton t_ iin

where dn, dU and dd are functions of k, • 'P sn' and Psn
n *Xn I ndd n in' Oin asn' S

which can be found using the material of Section 3.2.2 'to 3.2.4. The individual terms

in the sum (4-17) remain finite as "r-0.

In comp.ting the data of Section 4.2, D was calculated using (4-17).

By rearranging the terms of (4-17), we obtain an expression for PDU

as the sum of N corner contributlons,
N-1 '
N-i F exp J-21 Tkre k ' (4-19)

n= 0n n

where the flat plate corner diffraction coefficient r, U is given by
n

U 0~ 1 t__ 1 dU 1~ U)~(-0
172 cs Y =n41 cos) Yn-2 (2 r7)1/T n+1

The representation (4-19) corresponds to a physical interpretation of the fringe

wave scattering in terms of rays diffracted from the corners of the plate.

Note that the diffraction from a corner does not depend on the lengths of the edges

which meet there.

The representation (4-19) is valid if and only if the condition



r0 + for all n t4-21)-er +8r)" 7n~

Is satisfied. This condition excludes all cases in which one or more edge&

are normal to the bisector (e r + e of the blstatic angle and thus as:, normal to e.

It also excludes the case of forward scattering, for which

+e+ =0. (4-22)--r --r

U
The condition (4-21) is necessary because two or more of the C are infinitenI
when (4-21) does not hold. A correct result can be obtained, however, by taking

the limit as the left-hand side of (4-21) approaches zero,

The physical optics coefficient DPf has been studied in Section V of

_UReference 11. Like D , it can be represented either as the sum of N edge

contributions or as the sum of N corner contributiomis. The edgc contribution form

Is DPO= e-Ci/4 CJN-1 sin Y nO
D () 1/2 kt j exp J-2irke. C d do'= (4-23)

n=O n

where

d PO e sin1 Y sin/4
n= 1/2 fr (4-24)n 2 (2 Y?

Jo =-e- ex n x (tx ' ) ,1 (4-25)

0 2r t) r

and I Is the unit dyadic. The corner contribution form is
N-1
E = exp I- 21-rke . 'n1 c j oJ (4-26)

where c rPO related to the dnPO In the same way that c U is related to

the d in (4-20), that Is

PO. e1 1 P0 I PO
cn 1t)l/27 B n+t Z -cY dn (4-26A)2 (2 osnlnn •

Upon substituting from (4-24) Into (4-26A), we obtain the much simpler exprossion
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c n0 8- r(tau) n~1 "tan Y). (4-27)

The edge contribution form (4-23) to valid for all cases in which -r * 0 and

approaches the correct ltntj

P k2
= - k SJo (4-28)

as '-- 0. The corner contribution form (4-26), like the corner contribution form

(4-19) for D U, is valid if and only if (4-21) holds, and a limiting process will yield
the correct result when (4-21) does not hold.

In computing the data of Section 4.2, D PO was calculated using (4-23)

except at normal incidence.

If we combine the fringe wave and physical ootics contributions, we obtain

the edge contribution form

e-t /4 N-1 sin
Fk exp _ 1-21rke Cn d (4-29)S(t1/2 n 0n

(2 v) n =0 y
n

with

d =d U +dPO j (4-30)=n =11 n =0'

which is valid when 1 (0, and the corner contribution form

N-1

D N- exp 21i'k e r"}c (4-31)
= =0

with

i I /4 11'

S/2 -d (4-32a)
2(2") 'T n n

Ce1 + PO I(43b

=n n =0

which is valid when (4-21)holds.
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"The physlcal meaning of (4-31) is that,-to the order of approximation we are

using here, the total scattering from the plate can be represented in terms of

ris diffracted from the corners of the plate, with the diffraction from a corner

.. _ýpendent of the lengths of the edges which meet there. This statement

would still be true if we were to Lake into account the distortion of the fringe

wave currents near the corners but is no longer true when we take into

account edge interactions.

It should be noted that the method of Ryan and Peters (Reference 10)

can be applied to the polygonal plate problem and leads to a result which can be

written in the form (4-29), but with a different expre3sion for d . It can be shown

that the Ryan-Peters method gives accurate results in rrmay cases for which

standard Geometrical Theory of Diffraction is not satisfa.ctory but that there Is

a much larger class of problems which can be solved a.-curately by using the value

of d n developed in this report.

For scattering bodies other than polygonal plates, a similav observation

can be made as to the relative ranges of usefulness of standard GTD, the Ryan-

Peters method, and the form of PTD used in this report.

4.2 TYPICAL RESULTS

Figures 7 to 11 compare calculated and experimental vaiues of radar cross-

section for diamond-shaped and Lrapezoidal plates. The calculations were made as des-

crlbed in Section 4. 1. All data are for backscatter, e e e . with receiver
-r -r -r

polar';7t1nn the same as incident polarization, 9. = The orientation of e is
-r

given by the angle a, measured in a plane normal to the plate and Including the axis

marked Z in the figures. For a = - 90* , the incident wave is traveling in the +Z

88



f= 10 Giz

k-6 A

,=-900 0T + 90
Z lo

incident wave lIncident wave

-5

Measurement

-1/ o - - ILEDC Computation-10

/0

-15 0

--I //1I \\

eII°
ii '0

12 24 36 I

ASPECT ANGLE a (deg.)

FIGURE 7 RCS OF DIAMOND SHAPED PLATE IN PLANE NORMAL i
TO 10A• DIAGONAL, VV POLARIZATION

109

89 U,



f 10 GHz

1-- l 6

Incident wave < incident wave

! I
-- 10

Measurement

-20 - - o - - ILEDC ComputationI /6-- 20

-- 30

I I

12 24

ASPECT ANGLE a (deg.)

FIGURE 8 RCS OF DIAMOND SHAPED PLATE IN PlAN8 NORMAL

TO 6 A DIAGONAL, HH POLARIZATION

90



S"6.4 GHZ

z

ou,.._90" ~ a m+ 900

incident wave Incident wave

L 20

10Measurement

'5
* LEDC ComputatIOn

-10/\

-- 15o

--20

-90 0 go

ASPECT ANGLE a (deg.)

i'.IGUIIE 9 RCS OF TRAPEZOIDAL PLATE IN PLANE NORMAL

91_ _

LA



;••, • •••S• -- . -. • -. •.•,_ • p _ -.j•

f, 6.4 GHz

a -90* *,+900

Incident wave Incident wave

L
20

15

10
-- Measurement

5

0 0 . ILEDC Computationj

-50

-10 I
-15- -20 • .

-90 090

SjASPECT ANGLE a (deg.)

' Ii
FIGURE 10 RCS OF TRAPEZOIDAL PLATE IN PLANE NORMAL TO

16" SIDE, HH POLARIZATION

92



Giftf m6.4 GHZ

a m-900 ce + 90j

incident wave tncident wave

-0 1
Measurement

ILEDC Computation

0

-10

-- 20

_;0O 0 90

ASPECT ANGLE. (dog.)

FIGURE 11 RCS OF TRAPEZOIDAL PLATE IN PLANE NORMAL TO

SHORT DIAGONAL, HH POLARIZATION

93

:1;; :" •E•• I• ,



direction and e thus points in the -Z direction. For a -0°, the wave Is incident-r

normal to the plate and, for a = 90", It is travelling in the -Z direction. Vertical

polarization V corresponds to p and thus E normal to tho Z- axis, and horizontal

polarization corresponds to H normal to the Z- axis. Data are given for a = 00 to
0I

90* for the diamond plate case, 0 900 to + 90" for the trapezoidal plate.

Experimental data were normalized so that they agree with calculated results

at normal incidence, a = 0". These experimental data were obtained by sweeping j
a through 3600, which gives a pattern which should in principle repeat tour times

for the diamond plate case, twice for the trapezoidal plate case. The plotted data

are for one non-repeating part of the experimental pattern, with no attempt to average

out those variations which were observed between parts. Examination of these

variations indicates that main !obe data are quite reliable, the positions and peak

values of the first few sidelobes are fairly reliable, and hardly any of the data

on nulls are reliable.

In light of these shortcomings in the experimental data, plus the fact that

even the first sidelobes are so many dB down from the peak value of 0, the

agreement between calculated and experimental data is quite good. The divergences

which arise as we approach grazing incidence in the problems of Figure 9 and

Figure 10 cait probably be removed by taking into account edge Interactions

and corner current distortions.
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V. SUMMARY AND CONCLUSIONS

In Section I, we have given an overview of the Physical Theory of Diffraction

(PTD) and the role which the Incremental Length Diffraction Coefficient (ILDC) in

general and the Ufimtsev Incremental Length Edge Diffraction Coefficient

In particular play in the theory. The actual formulas for expressing far-field

scattering in terms of ILDC's are given In Sections 3.1.1 and 3.1.2. General

formulas for the ILDC as a function of the effective surface currents are summarized

in Sections 3.1.3 to 3.1.5, with these sections drawing heavily on material presented

earlier In Sections 2.1.3 to 2.1.6. The Uflmtsev ILEDC dU Is developed in Section

3.2. Then PTD and the Ufimtsev ILEDC are used in Section IV to solve the problem

of far-field scattering of a plane wave from a perfectly conducting polygonal plate.

The data in Section 4.2 show how well problems can be solved by PTD with use of the

Uflmtsev ILEDC, even when edge interactions and current distortion near the

corners are neglected.

These neglected effects can be accounted for within the framework of PTD,

and the results thus obtained will remain accurate nearer to grazing incidence. Even

without such further development of PTD, a great variety of problems involving flat

plates, finite cylinders, doubly curved surfaces, and bodies with fiat faces can be

solved satisfactorily by simply using the Ufimtsev ILEDC of Section 3.2 In conjunction

with the physical optics material of References 11 and 12.

Before treating the ILEDC in Section I1I, we develop the simpler theory of

the Two-Dimensional Diffraction Coefficient (2-D DC) in Section II. Sections 2.1.1

and 2. 1.2 show' how, to express the far-field scattering from an infinite cylinder in

terms of the 2-D DC. Sections 2. 1.3 to 2. 1.6 give general formulas for the 2-D

DC as a function of the effective surface currents; as already noted, many of
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these formulas are also used for the ILEDC. Section 2.2 gives the 2-D DC's for

Ufimtsev's and Keller's approaches to scattering from a cunducttng wedge. TMe

material of Section Il ts supplemented by a thorough study in the Appendix of

scattering from an infinite cylinder. Some of the material in the Appendix can be used

In extending the approach given here to the case in which source and observer are

not both at infinity.

A list of key equations for expressing fields in terms of diffraction coefficients

and for evaluating the various edge diffraction coefficients is given at the end of

Section 1.

Some additional comments are appropriate on the equations for the ILEDC

dU in Section 3.2. 1. Equations (3-56) to (3-6n))have been verified as correct when f and

I g are defined by the integral expressions (3-52) and (3-53). For -1< V :5 1, it has

been verified that f and g are given by (3-65) to (3-74). Bit further verification is

still needed that (3-75) to (3-78) are correct evaluations of the integrals of (3-52)

and (3-53) for the cases V n -land V>1.
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APPENDIX. SCATTERING FROM AN INFINITE CYLINDER

1. 1 OBLIQUE INCIDENCE AND EXPONENTIAL VARIATION ALONG AN AXIS

AOur main objective in this Appendix is to verify the material of Sections 2. 1.2

to 2. 1.6 for far-field scattering from an infinite cylinder when the plane wave of (2-3)

is incident. We shall follow the notation of Section 2. 1, as Illustrated in Figure 1,

with one excsption: we use the symbol 0 in place of both j3 and I3s because, as weIIshall show, i = for an infinite cylinder problem.

The plane wave of (2-3) has exponential variation along the cylinder axis. To
show this, we substitute (2-2) and (2-8) into (2-3), obtaining

exp IIk tI z ejc I-I

- Eoexp t-iktt 0-0 = Z exp 0 ([-)

with 1 and J4 independent of t and given by

-io fiEop- exp 1-i k cos l••rl-i

(1-2) I0oo E o t.rI xp exp I - ik coe, 2r" i.P
and with the axial wave number kt given by

kt = k sinf3. (I-3)

We are interested in scattering from an Infinite cylinder, aligned with the t-axis,

which either is composed of material Invariant in the t-direction or is described by

boundary conditions with no t-dependence. When a field wtth exponential t-dependence

is scattered from such a cylinder, there Is nothing in the scattering process which

affects the t-dependence of the field. The scattered field thus has the same exponential
t-dependence as the incident field. By factoring out the t-dependence, we can reduce

the original three-dimensional problem to a two-dimensional problem. This is the

approach we shall take here.
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begin in Section 1. 2, by developing important basic material: the Maxwell and

Helmholtz equations and the Green's function for fields with exponential t-dependence;

integral representations for the field produced in free space by current sources with

exponential t-dependence; and a more general representation for far-field radiation

from such sources. Then in Section 1. 3 we apply the material to scattering problems.

Afthough emphasis is on verifying the material of Sections 2.1.2 to 2.L 6. there is also
much useful material for the cases of source or observation point or both at finite
distance from the scatterer.

1.2 FIELDS WITH EXPONENTIAL VARIATION ALONG AN AXIS

1.2.1 THE MAXWELL AND HELMHOLTZ EQUATIONS

Let us consider a homogeneous region of space, with cylindrical boundaries
parallel to the t-axis. Let this region be filled with a homogeneous medium with wave
number k and wave impedance Z, and let the region contain an electric current source

distribution K v (amperes/m2) and a magnetic current source distribution Kv
(amers/n -mo

2
(volts/m ) which have exponential t-dependence:

L , =-o (K exp -i kt t for q =e, m . (1-4)

Here the axial wave number ktis not restricted by (1-3), but is an arbitrary complex

number.

Under appropriate conditions on the behavior of the field at the boundary, the

composition of adjoining regions, and the sources in these regions, the field (EH in

the region of interest will have the same t-dependence as the Kv
-qo

E=p I_1 j k (1-5)E--E (o) exp 1-iktt } , _H=1-l(e)expf-ik~tt}.II5

For such a field, Maxwell's equations J

Vx H +-kE Keo 1-6)

Z - -e

vx E- ikZ H =-K v t(9-7)S... . mo
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take the form

1k A A vSx _ HA-+ =Keo
-(1-8)

Vx~-ktxA A A v(-9V x kttx E-IkZH -K moi .. .. mo(I-9)

Now let us introduce the notation

f f t-- + fP (1[-10)

to represent a vector f as the sum of an axial component ftt and a transverse corn-

ponent _f. By using the identtty

-Xf E L V LxfP (.6)1-L x ft(),I-)

we can decornpose (1-8) and (1-9) to obtain

I

II

A +L_ xjp x~v
VH t + 1k ii P - -eop (112)

A A

q k -tv .L -1tk A xHXgý)- (v-13)

A A A V
V LX Ep)+tkZHt Kmot '(-4IA 1k ý A v
V(x HP)- T t~ =K eo (1-15)

!I

By appropriate manipulation of (1-12) and (1-13), we get

A A Vktv

V11- 1 t! p - _ (t-Xx)
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and

A k-Z t A t A kZ VVEt+T -t xHo+ --l,---txVHlt=-t xk 1 0  -t AE ... + " mop -"'--K eop ' (1-17)

where the transverse wave number k is -elated to k and kt by
A 2 = 2 (-18)2

The pair of equations (1-8) and (1-9), the four equations (1-12) to 4(1-15), and the

four equations (1-14) to (1-17) are three equivalent forms of Maxwell's equations for

fields with exponential t-dependence.

If now we take the divergence of (1-16) and (1-17) and make use of (1-14), (1-15),

and the Identity

V I tXVg(P) -0,(1-1)

we obtain the Helmholtz equations

2 A ^ k2 A v A V kt A v

(V +k ) Kt Kmot - x Keo- Z_' -mopV (1-20)

and

2 ^ k2z, /'v ktZ -
(V +k7E ~W K +t*xeop (1-21)

(V2 ~ ~ +k Et Keot+ t_'VY x K~mopV • • I2)} -•

A A
In conjunction with these equations, it is usefil tn express E and H as functions of

Hlt and Et by the equations

A A A VA
E k VE +kZt x VH +k t x Kmo +kZ K -p= j-2 kt t - 0o Z ](-2

and
A 

AI k A A k AVS2 tVH - -- tx VEt -kttx +-Z Kmo (1-23)

which are just rearrangements of (1-16) and (1-17).

Thus far, our results are vatId for arbitrary values of k and kt, and k has only

appeared in the fornk . We now restrict k to be real and positive and restrict kt to

not be a real number with absolute value greater than or equal to k. Furthermore, we

define k to be the root of k2 which has a positive real part. It is readily seen that such

a root exists for all admissible values of kt in the complex plane- pure imaginary roots
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correspond to the forbidden values of kt, which in turn, correspond

to surface wave problems rather than scattering or radiation problems. We can r~sdily

confirnm that

A A A

Sk -ktRktl. k t (1-24)

where subscripts R and 1 Indicate real- and imaginary parts respectively.SI I
For t .and kt Ik, we can use the notation of (1-3) with (3 real and in ",e range

< -< < .We then have

-keouft (J-24A)

A
For any admissible values of kt aAd k, we have

A
kt =k sin , k =k coso3 (1-24 B)

for some value of /3 in the open strip

"T "•< f , ( arbitrary . (1-24C)

"The problems of ultimate interest in this Appendix are scattering problems,

more specifically problems which involve scattering from an Infinitely long cylinder

of finite or infinite cross section Into an infinite region cf free space (or other homo-

geneous lossless material). In this type of problem it is useful to consider the total,

field (E, H) in the region outside the scattering body as the sum of an incident field
scat scat .(Eo, DO) and a scattered field ( H ,

+ H H + _Hscat 11-25)

The incident field (1o, H 0) we define as the field which would be produced in free

"space, that is, in the absence of the scattering body, by the sources exterior to the

s-atter!ng body. We include the effect of sources at infinity, such ae those which give

rise to plane waves (see Reference 4, Section 2.2.6).

It follows that the scattered field has no sources exterior to the scattering body.

e osequence of this is that nscat and Scat satisfy homogeneous Helhholtz
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equations,

2 +A. 2 AsCjt (,2 + 2  /' seat (-6
( k +)E =0,( +k Ht 0,

in the region exterior to the scattering body. But these equations would still be valid

if there wero sources at infinity. To exclude such sources and to thus obtain a uniquely

defined scattered field it is necessary to impose a condition on the behavior of the field

at Infinity, a condition which guaranteeM that the direction of power flow at Infinity is

away from the scattering body.

When the cylinder cross section is of finite maximum

dimension, the appropriate condition is that both E candlt must satisfy a

two-dimensional radiation condition of the form

lm p/2 F ) k F(P) 0, (1-27)
- F(P)1=0,'

where

is distance from the origin in the transverse direction. There are also many problems

Involving cylinders with cross section extending to Infinity--such as the wedge problem
discsse in~cton 2.i wh ch atcI scatdiscussed in Section 2.2 -- In which sEt and sat satisfy (1-27) for some or all

directions of scattering.

The condition (1-27) tells us that the behavior of the field F for P large is
0 3

essentially the same as the behavior of a cylindrical wave with propagation constant k.

It is important to realize that (1-27) is a radiation condition because we have

required that ý have a positive real part and that an equation of form (1-27) would

not be a radiation condition if kR were zero or negative. We shall verify In Section

1. 2.3 that > 0 does indeed characterize a radiating field, that is, a field which

carries energy away from the origin.
A A -',scat

The quantity kI caa be positive, negative, or zero. When kIIs negative, Et and
^scat
H increase exponentially with Po for P sufficiently large. This behavior, strange

as it appears at first look, does not violate any physical principle. The physically

meaningful quantities are E and H, not E and H, and, as we shall see in Section 1.2.3,
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the fields E and H propagate energy at an angle to the cylinder axis and the fields do

not increase In the direction of energy propagation. Waves with negative k are called
leaky waves..

Since the scattered field has no sources outside the scattering body, it mus L
necessarily have sources within or on the surface o• the scattering body. We shall show

that the effective surface currents on the scattering cylinder act as the sources of the

scattered field.

1.2.2 THE TWO-DIMENSIONAL GREEN'S FUNCTION

Let us now introduce the two-dimensional scalar Green's function

() 

1-29)

where we are using the notation H ý1 ) for the Hankel function of first kind and order n, and

is the distance from source point j' to observation point e. The function G satisfies

the Helmholtz equation

(V2 + ý2) -_ 6 _-(1-31)

where 6 is the Dirac delta function for a point singularity In a two-dimensional space.

We can readily show that

V P= -VIP= a (1-32)
and

1

V~P=v'v'P =1 v' P =-V'V P= ( -1 ), (-33)

where

S= (p- p' )/ (�11-34)

is a unit vector pointing from 2' to p and
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1P =ez- + e y e y 

(-+

acts as a unit dyadic for vectors normal to t. Using (1-32) and (1-33), we obtain

A(1

T MiP Cy(1-36)

and 
i

V Vv V' T-G~-vv. (1-37)J

H(') ~ 2 a2,+ P H P)P g a (138

For
AA

we have the approximations

G = G4ee 
Ik P

where the value of the square root with positive real part is chosen, J
-r - (1-40)

and

vv •'V'G - -V' -v'vG-k 2  GR_ (a-41) G

These approximations, obtained by using the asymptotic expansion of the Hankel

function, are useful in both the rdliating near-field region and the far-field region
* as defined In the IEEE Antenna Standard (Reference 7). It can readily be shown

* that G R satisfies a radiation condition of the form of (1-27). I
Let us write P In the form

r 
(1r -42

whezi-a P= a n(-8 noh Po= a-s in (1-28) and er is thus a unit vector. (We shall show in Section
1.2.3 tiLat the e of (1-42) 19 the same as the e-r of (2-13).) Then, for k renl and

.12..
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we have the approximations

r 

As As

% Ith i v1/4 A
G _o e_ eikP0

e 0 4IP4617

These can be derived from the more general expressions (1-39) to (1-41). The approxi-

mations (1-44) to (1-46) are useful for far-field problems. Note that they depend on the

choice of origin but (1-39) to (1-41) do not.

We could also define far-field approximations for complex k but these are not

of as much practical interest.

1. 2.3 THE FIELD DUE TO SOURCES IN FREE SPACE

We shall now show how to calculate the field produced in free space by current

sources with exponential t-variation. This material is intrinsically useful, for example

in calculating the incident field due to a source distribution. Much more important, it

will form the basts for our treatment of scattered fields as functions of effective sur-

face currents.
v V

'Con'sider a current source distribution K v, _Kmo of the form of (1-4). We

designate as D the region of the (x, y) plane in which the functions K eo (p) and -me (P),

which dosorlbe the transverse variation of the source distribution, are non-zero.

terinloyv and' vC .(In mathematikal terminology, D is the s of the functions -eo and Kmo.

Let us restrict D to be of finite extent, that Is, to have a finite maximum

dimension, so that there are no sources at infinity. We can then

obtain an expression ter the field component Et as a function of K., and Kmo by
applying the two-dimensional Green's theorem, (48) of Reference 8, which tells us that

jjdA(f gg~f) jdi (f~ - W.) (1-46B0
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iI
for f and g functions of x and y only, A a finite area, B the boundary of A, d I

the incremental length along B, and 8/89 the derivative along the unit normal n to

B which points out of A. We set

f( -g()=(p ') (1-46C)

and take the area of integration to be a disc b of radius P with center at the
origin and with P large enough so that B) contains D. We thus obtain the
preliminwy result

t t (1-47)1

Here L is the perimeter of ) and a prime denotes a function of the integration
variable or a derivative with respect to the integration variable.

If now we let P approach infinity, the integral around L in (1-47) will vanish by
virtue of the radiation condition (1-27). Also, the V2 terms on the left hand side of

(1-47) can be eliminated by making use of (1-21) and (1-31). We thus obtWl

Et:= •d _2 z v v kz t -48)
__v-eot -mop • -eop

We can eliminate the derivattves of the source currents by using the two-
dimensional Gauss's theorem (42) of Reference 8 and the two-dimensional Stoke's theorem

(51) of Reference 8, which take the forms

/fdA V -P f di -'P _ (1-48A)

/AfdA t_. (Vx P) = t~d (Lx_-)- (1-4 8B)

respectively for P normal to t and independent of t . We then reduce the domain

of integration from D to D because the integrand vanishes outside of D. The result is
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--t 1( -vU- -o ot --I

(~ A2 A ksZV
A = 1 dD'I K op+ -EG K mo + TV G ,Kep mo (1-59)

D
which is the desired integral representation of E.The analogous equation for Ht is

These results are valid for any observation point p which is bounde4 away from
Dthat is, which does not Its within D or on the boundary of 1D. The situation at later-

ior points and boundary points of D is more complicated and shall not be considered

here.

We now readily obtain the expressions

4~t = - D' l G (t x A:oo)+ ý2ZV 5K ee + k t V' -eo (-51
Dv MOO soVt  ksoA,

and

z(~) VVdf - ALVI (1-52)V(Zt D ZVV'G • De )- VGK ot V moJ
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for e bounded away from D, which is a sufficient condition to justify taking the V

operator inside the integral sign. By substituting (1-51) and (1-62) Into (1-22) and

(1-23), we obtain Integral representations for and p (Note that the source

terms In (1-22) and (1-23) vanish because 2 is outside D.)

When L is sufficiently far from all points p' of D so that the inequality (1-38)

holds for all such g', then we say that 2 lies in the radiating near-field retion of the

source distribution. By use of (1-39) to (1-41), we can readily show that in this region

we have

=ik fdD' V(k; ZKe V V k ;p t ), (1-53)

Z DH Lk -o D' GR1DGR Ur (k. kt, Z) xV(k; Z -mo ;kt; g; ) -

with
A ViAV V, A v1

V(k; ZKe K kt(o;P')=- Z urxV(u x K )+urxK

-e -m t''- -
Ave Ave

+ Vik;ZKe'-m ; kt; v e )u II('kt, •)'(I5)'

vV(k;ZKe (k; - K k - (1-55)

Ave A

-e(m_ '-)•- + !a. ( ,e (I-57)

AV# Ay VV v v

V 11 (k; ZK , ,Km;kt;_ )=-u - -mp "l 1-et r '-55)

ue m (k, kto o)= +ktQ) .(1-59)

UV (k, 1 ()= m -ktt) E (1-60)

These results are valid for k, kt, and k restricted as in the discussion preceding (1-24).
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Ith arguments Z_ , Km, and a are of course themselves functions of the argument e'.
The rgumnts -M

The vector ui is always real and of unit length. The vectors _u 1 and d r are real

and of unit length for kt real and tktl c k. For kt, 9 0. we still have

I- u = l (I1--0A)
-rz

but the length of u and of ur, as defined by (2-4) ts greater than unity. In all cases.
the three vectors u , u , and u r are mutually perpendicular and

•zu= ulxur =u u xu_ =U (1-61)x u.. =--r - u P r -- r -L ( )

These vectors are generalizations of the vectors e2, a a defined in Section
2.1.2.

Let us now consider the case in which the sources are concentrated at the origin:

A v
Ko (.): = o(6,for q =e, m , (1-62)

where 6(p) is the Dirac delta function as In (1-31!. We .hen have

A A A/ S A A S
E=E 1  1t r ) + E1,u,1 (kkt, er)'

A A S A A AS A AS (1-63)
ZH=Ur (kkter)xE = -Ell u±(r ÷+E±gi (k, kte)

in the radiating near-field region, with

A
ikP ke-t -/4

E = e / ke2 1/ Voop for p- =i. ,u (1-64)
1/2 )17/2 0

Here PO and e r are defined as in (1-42). The quantities Vo0 and V are the

coefficients of 6 (E) In the expressions for VI and V1, which we obtain substituting

(1-62) into (1-56) and (1-57).

We can readily confirm that 1and ^1! of (1-63) satisfy the radiation condition (1-27).
We can also readily verify that these functions increase exponentially with P0 for kI . Cf.

the leaky wave condition. We now want to show that the field E, H whose transverse
variation is given by (1-63) indeed carries energy away from the origin--as a radiating
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field by definition should--and that the field amplitude does not grow exponentially' with

distance In the direction of energy propagation.

To this end we recall that the time average power flow (watts/m2) is given by the

real part §R of the complex Poynting vector

S = E xH (1-65)

where - indicates the complex conjugate. Thus the direction of iR Is the direction of

power flow and energy flow and furthermore the condition

•>Oat Ps p for P. sufficiently large (1-66)

characterizes a radiating field.

For the field with transverse dependence given by (1-63), we have .

A -A 1X

S ý+ E u ) x -Eu +E u

-1 11 -Ii 1- 1--

r R +ktR 1) Eltxe-rI. (1-67)

Z jrk R

In deriving this result we have assumed that Z is real, which is compatible with our

assumption that k is real, and we have used

U-XU 2 I'Ak A -I kti A2 2t)Q . (1-68)

k 2 tR) k2  R tR

Taking the real part of (I-67), we have

R 2  kg F 2O2A, A(169
S+ k t Vi ý (Ell El)It X er 1.

k 2 • R R-

Thus (1-66) is clearly satisfied If and only IfRi> 0, which verifies our statement that the
condition >0 characterizes a radiating field. (We also see that there is no power

R
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A
flow either away from or in toward the axis when k is pure imaginary, which confirmsA

that these values of k correspond to surface waves.)

Next, from (1-5) and (1-63) we have

ELAJ- exCp jl -kt t)I=- expfit -r -ktL E
-- 1/2 ;7'PA 1/2PO 01-A•:2 e • A a _P "R As _

t_ / _x R rk -r - k tit ) _,(1-70)

with I

A ke -t 7/4 IV
A- 2{vk)/ (V° u +v Vouut (1-71)1

2(2n k)" 4001 +L K 00 u1

Now at point E, the direction of energy propagation is the direction of §R" Thus, if we

define

r 40 ). St ' (1-72)

we see from the last term of (1-70) that there will be an exponential increase in E in i

the direction of propagation only if r' 0. But use of (1-69) and (1-24) in (1-72) yields

r= E j2 ( - ,,I EI 0 R k +ktRktI)= 0 (1-73)

so there is neither an exponential increase nor an exponential decrease of the field in

the direction of energy propagation.

For a source distributed over a region D of the (x, y) plane with finite maximum

dimension, the corresponding results arb that, for P_0 sufficiently large, the radiating

field condition (1-66) holds and there is no exponential increase or decrease of the

field in the d1reotton of propagation.
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Let us next consider the field in the far-field region for the case of ý real and
less than k. %% shall defer until later a general definition of the far-field region. For
the moment, it is enough to say that a point r is In the far-field region of a source

distribution with finite support D if Pis sufficiently large at r so that the Inequalities of
(1-43) hold for all .' in D. Because we have assumed

Ak < k , (I-73A)

we can write

A
k =kcosfl , kt k sin/3 , (1-74)

with

"2 < (1-75)

as in (F-3) and (I-24A).

One way to evaluate the field at P is by substituting the approximations (1-44)
to (1-46) for the Green's function and its derivatives into (1-49) to (1-52) and then
employing (1-22) and (1-23). A more convenient approach, however, is to replace
GB and a by G., and e respectively in (1-53) and (1-54) and then use (1-5) to obtainSr
expressions for E and H. In this manner we obtain, from (1-53), the result

el() = J k (1-76)_expD exp 1-t kI, ek P) (1-76)/4 k

-(P /Cos/ l 1//2 2(2 ,7)1/2 co "dsj9r D- -r

with A V' 1 ' Avt As •
Y1 = V(k; Z Keo Kme: kt;er;e) r (1-76A)

in order to put this result in a form more appropriate to the far-field case,
we begin by formall defining er as in (2-13), R0 and TO as in (2-10), and ,sand

tas In (2-14) and (2-15) respectively (with 0 . replaced by /3 in the definitions of5 o

trS and e Ii8 ), 'but for the moment we place no physical interpretation on any of
these quantities. We then readily find

Po =Re cos /3 , (1-77)
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P -i ktt kR Lo,• 2 , kt.j ,,n 3+.. k%. kt o (1-78)7 'and thus (1-76) can be written as

ikR

I~ ~ ~ T vwkcz It ksi3 T0

1 o (1-79)
S~with

f 

f-

2 (L ( k ) ~ D' expA -lkt + (k; - np-r - Z A V )

I~~e We, als 
paer 

m 5)
-

- (e 
(I-83)

S-- 
ee 

er 1

azimuthoanale, 
frm•5),b-3

-l(; rsi a unit vector In the (x, y) plane, It is determlne
0 • tf we know Itsand Lf. Thus we can write

V, I I 
Z V' 

,, 
si gA V

at (ZK eI
We alo hae, fom q-4), 1-83ZH = a xI



-~* ke K -m 0s -

which is a more convenient set of arguments for many purposes. (This set of

jarguments can also be used in the radiating near-field region, in which case 08

is itself a function of P'. )

an is clear from (1-79) and (2-10) that e r gives the direction of phase propagation, I
and It can be shown by evaluating S. (see (1-69)) that er gives the direction of energy

propagation. It then follows that the ray through r does indeed appear to originate at I
the point t = T0 on the £ 0 axis and that R0 is the distance from the cylincaer axis to

ralong the ray. I follows from (1-61) that 2t e l' ' 2r , in that order, form the

basis of a right-handed Cartesian coordinate system. Thus we have justified the

physical interpretation given to R0 , T0 and the three unit vectors In Section 2. 1.2.

It is also clear now that the definition of i a in (1-42) leads to the interpretation of-r

A Sr embodied in (2-13).

We can now give a more general definition of the far-field region with respect

to a source distribution of finite support D. It is the region consisting of all values

of r at which the field is given accurately by (1-79) to (1-84). The region is cylindrical,

since the validity of these equations depends only on P, not on t, but Its inner

boundary is not in general circular. The condition we used previously, that P

be sufficiently large so that the inequalities of (1-43) hold for all P' in D, is a

sufficient but not necessary condition. For finite D, the fact that (1-79) holds with f

independent of R0 and T0 implies validity of (1-80). This is no longer true when

D is infinite, in which case the far-field region is defined as the region in which (1-79)

holds with f independent of R and T but not necessarily given 1-y (1-80). The case

of infinite D is discussed further in Section I. 2. 5.

It is also useful to consider far-field scattering when k is real and greater than

k, that is, when
A Ak =k R >k. (1-85A)

In thiscasek is pure imaginary. It is convenient to allow to take pure

imaginary values,
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00 > >(1-86)

5 S
so that we can still use (1-74) and we can still define vectors e, e, and

e8 by moans of (2-13) to (2-15) (with (. replaced by 0). It is readily verified thatr- 8 8

the vectors e and er are now complex. It is also readily confirmed that we can

ecuvalently define e e, , and e r as the values of uL ,u, and u~r of (1-58) to
414,.0) for or = -r

-•r

By the same procedures which yielded (1-79), we obtain
A

SCos 1/2g elk P wxplk ZH e8 xE (1-87)
1/2 -r EPo0

with f as in (1-80). We find from (1-69) that energy flow is normal to t, a fact

which Influenced our choice of notation In (1-87).

L2.4 THE FIELD DUE TO SURFACE CURRENT SOURCES

There Is a very strong analogy between scattering problems and source problems

In which the sources are surface currents. For this reason, it will be useful to

specialize the results of Section L 2.3 to the case in which the field is produced by

surface current sources K eo, Kmo, with the exponential t-dependence of (1-4), locatedon a cylindrical sheet S whose projection onto the (x, y) plane is the curve L. We shall

restrict L to be of finite length, which assures that the maximum transverse dimension

of the uource region is finite.

If L is a closed curve, we define r. as the unit outward normal from L. If L is

an Gpen curve, we can arb'trarily define either unit normal to be n. In either case,

we then define the tangent vector I so that (2-1) is satisfied and define I to be the
length parameter along L In the I direction.

The units of surface currents K e and Km are amperes/rn. and volts/rn. respect--
ively. As indicated in Section 2.2.8. 1 of Reference 4, a surface current K on S is the

limit as d -0 of a current source

K TK q(1-88)

li5
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lowing uniformly in a shell of thickness d with middle surface S. More mathematically,

K Is equivalent to a singular volume current density

q = K q6 (-89)

where 6 L tS the symboltc function defined by

dif=.f dD f6L for all f,

with D., the entire (x, y) plane. Sirface currents are restricted to lie in the plane of

S, and thus we have

Kq= K qt+Kqj I forq=e,m m1-91)

A
and a corresponding expression for K , which is related to K by an equation analogous

to (1-4).

On the basis of these considerations, we readily find that the general

expressions (1-49) to (1-52) specialize to

G 1! -a-iAk -Z eoK ' t- .9 G e t ,1 - 2

t •Ld -aG- mo l2 G ot kti FGF^

anj e 2 Kk ' o t + , (1-93)

eo + 8G•'- I'- + K mo)

A Ld ,A , 802 A, A kt- 1
VIZ~Tt)=-mo -' Z(---• )Ko eot•"g •

A k2  A k
mo (--- fdG) ZtooITJX ('-95)

Equivalent expressions which differ in the last term, of the integrand can be obtained

using

= i KK' . (K-96)'

In order to make (1-96) valid even for discontinuous K• and for open curves L, we

define K2 to include impulse functions at the discontinuities of on L and im- i
pulse functions at the end rpoints of an open curve. The impulse functions at the end

points are calculated by considering L to be part of a closed curve with K, 0 on the
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II
rest of the curve.

Note that (1-92) to (1-95) are still valid if the signs of nand I are reversed. This

Is why we can designate either unit normal to L as n_.

In the radiating aear-fleld region, the equations equivalent to (1-53) to (1-57) are I

A

E= ik fA''Gu (,k, xWK kal
L R ^ t -00 m; t,
K K K'o kt; o; I) (1-97)

A A
ZH . k ; ZkJL GR r ,kt, -W;mo; t ;'_ ), (-98)

^ Z ^eK' ^';

+W 11; Zk; I 'k kt;(Yt -; Z_1 -e, mA A A A

+w. A. A

-e' k; m';kt';-a'; 1') u~Ik kt, or , (!-99)

W 1 • ; Z K e , K n ; k t ; a 2 ; I ' ) = ( a - n _. .) Z K I • + K t - - -- _ ( .n _ K 1 !' ( I- 1 0 0 )
A kt A

A A A k A

k K k^ orj'; K- e, K +- (ta:) ZKe, (1-101)W. (c; ZK'eK-in kt; )----',) l et "- i-- e1

withuz.u 1 1 , andur given by (1-58) to (1-60). By virtue of (1-96), we see that (1-97)

and (1-98) still hold if W is replaced by ba vector W with elements

A k
in, k A,-02W, A + - KMt + 1IV kt V K' , M1 (1-102)

A')K I kat a (ZA

In the far-field region, (1-79), (T-84) and (1-87) are still valid, but fis given by
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0-i r-r/4 k 1/2 f dr ex' 0q - E '. k .laJ jar V)•, (1-104)InIz•)l df xp -I_.'~ (IW -0' %0 ' "--~to' -r I•' ~ I

2(2ff)112 co Lksn e;1)

and W, W1 , and W of (1-99) to (1-101), evaluated for kt =k sin j ando =e r , are
given by

W I-ze x5 'r x K' ea

el z ;;n+oil= WIS ,+ W^",

Wi =(•-r* tZ+cos- (j.8 8 ;ine Kin (1-106)

A A A A
WO = - t or et - Ke(1-107)

Again W can be replaced by W, and the components of W are

• r(e ZK'+cos/ 3 Kt + tani Kmi (1-108)

r" e t At

W - (er . K I + coos Melt + tan," (1-109)

Analogously to (1-85), we can write W as a function of a difforent and frequently more

convenient set of arguments,

A A"

ani we can write W in the same manner.

1.2.5 A MORE GENERAL APPROACH TO FAR-FIELD RADIATION

In this section, we shall only consider the case of real and less than k.
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We have already seen that, if all sources are confined to a region of finite extent

in the (x, y) plane, then the far-field radiation Is given by

% - tTo-
E= e f , ZH =e, (-111)

0

where f Is Independent of R and Tand is normal to er tn (1-80), we have given an

integral representation off and in (1-104) we have given a specialized form of this

representation, valid when the sources are surface currents. For any azimutho 5 .

there will be a value of R. beyond which the far -field expressions have a given

degree of accuracy, and furthermore there is some value of Ro beyond which the far-

field expressions have that degree of accuracy for all 08.

The situation is much more complicated when the source distribution extends to

Infinity. ft Is still true that, if the Integral of (1-80) or of (T-104)extsts for a given

azimuth angle 4•s then this integral gives the correct value of f for radiation in the

indicated azimuth direction. However, there are also cases in which the integral
ro

does not exist for some value of 0., but there nevertheless exists an f., independent of

Ro, which makes (1-111)vatid for that azimuth. As a simple example, consider a

constant surface current distribution on an infinite half plane. The integral represent-

ation (1-104) for f Involves the integral

('dI' {-k I-..1)

with k a function of 0" *nis Integral Is not uniquely defined but, nevertheless,

the function f of (:-111) exists for all azimuth directions except the two directions

normal to the half-plane.

The fact that (1-111) can hold independent of whether (1-80) or (1-104) holds (

follows from the theory of the two-dimensional Helmholtz equation, which tells us that,

under a wide variety of conditions, the solution has the form
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- - - - - - - - - - - - - - --

Q = - olG (1-113)
12 q

PO

with q independent of P for 0 fixed and Po sufficiently large. By setting

A~ o fEan~~ q -coo3/2jq f~ (1-113A)
Za -z , q=--cos 3/20 fj , and Q = it' I IcJ2 I, -IA

and then calculating the corresponding values of E and ^HP , we find that (1-I11) is a
consequence of the existence of solutions of form (1-113).

When the source distribution extends to infinity, there may be values of i for
s

which the representation (1-1l1)never becomes valid, no matter how large we make
Po. In physical terms, we can never travel far enough away in the 0. direction so

that we are in the far field region of the sources. In the case of the constant surface
currenL source on an infinite half-plane, this is the situation in the two directions L
normal to the half-plane.

Finally, for a source distribution of infinite extent, the far-field conditions
may be approached non-,untformly, so that, no matter how large we make Ro, in-

creasing R will increase the range of angles cs over which (1 -111) is valid to a
given degree of accuracy. This is the case when there are isolated directions for
which (I-111)never becomes valid. Thus, for the constant surface current on an
infinite half-plane, increasing R will decrease but never eliminate the angular
region about each normal direction in which (1-111) cannot be used.

12

4

,i
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1.3 SCATTERING OF FIELDS WITH EXPOrENTIAL VARIATION

1. 3.1 THE SCATTERED FIELD AS A FUNCTION OF EFFECTIVE SURFACE

CURRENTS

Let us now consider the field (E scat, H scat) scattered from a cylinder whioh has its

cross section bounded by a curve L of finite length In the (x, y) plane. The geometry

is illustrated in Figure L We use the same geometrical notation as In Section 1. 2.4,

where L defined the surface on which a source distribution is located.

A scat
We beln by applying the two-dimensional Green's theorem to E t and

We proceed as In the derivation of (1-49) except that we exclude the region interior to

L from the domain of integration and we thereby introduce a line integral over L.

The line integral involves j1 scat, which we eliminate by use of (1-17). We alsoan it~

m e h scat
ake use of the fact that Et has no sources in the domain of integration. We obtain

the result

A sca t B G ^ scat , _ -k z 5 scat, t - 3 "', cat ,Et (E_.)J= '( t = di I.-" - = 'G T, Hj ) (1-114)

for r outside L. Similarly, if we apply the two -dimensional Green's theorem to

and the source field ^Etwtth the domain of integration taken as the region Interior

to L, we find

8G A A2 A kt Z a A

n Eot- F GHo---IF-G 9, Hot) 0

when the argument rof d is a point outside L. Upon adding (1-114) and (1-115) and

expressing the result in terms of effective surface currents, we obtain

Ascat k2 Z A A
E- =n Km Gk- • --' -+ = - KTr'K . (1-116)

T7, ere are no Impuiec functionz In _'ee because L is a closed 4ourve and Kek. is

continuous even at an edge, that is, a point where the tangent to L is discontinuous.
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A

(See Section 1I of Reference 5, which also gives the dual result thatKm• is continuous.)

Thus we can apply (1-96) and obtain

Agscat f,, 2G .,A ktZ Ab A
Et = dKn Ki - . (1-117)

LA
A A ~~scat adKoad•orpae yK. n

But this is just (1-92) with Et replaced by Et and and replaced by^ andtt -Koo to
Kim respectively. Indeed, we can readily show that all the integral representations

(1-92) to (1-95) and the radiating near field formulas (1-97) and (1-98) still hold with E,

^ • ^ •~~scat, sa
H, o' and Kmo replaced by E RsL, ^e, and Km respectively and with W and

the alternative form W still given by (1-99) to (1-103). We can similarly show that the far-

field scattering is given by (1-104) and (I-Ill)with E, H, Keo, and K replaced
_scat scat A-e ^- -mru

byE , _ , and K respectively. (We retain the notation f for the radiation
AA

vector in both cases. ) It should be noted that K and K are functions of f and linear
A A -le M

functionals of the functions ZHot (I ) and Eot( ).

We now have a complete set of representations in which the effective surface

currents on the scattering body act as the sources of the scattered field. These

representations hold even when the tangent to L has discontinuities, because the result-

ing infinities in Ket and Kmt are Integrable (See Section 11 of Reference 5).

The representations also hold for scattering from thin cylindrical sheets. The

path L in this case is traced in one direction on one face of the sheet and in the other

direction on the other face, enclosing zero area. A simpler formulation can be obtained,

however, by using the same equations but with L now an open path running along theAA

sheet from one edge to the other and K and K now the sum of the effective surface currents
e M

on the two faces, which is proportional to the jump in tangential field across the sheet.

Regardless of whether L is of finite extent or extends to infinity, the following

principle ( a form of Huygens' Principle) holds:

If an incident field ( E &, HM ) produces effective surface currents (Kel LK )

on the surface of the scattering cylinder, with K and Km having the expon-

ential t- dependence of (1-4), and if identical surface current sources
.scat Hscat)

(Ke', Km) would produce a radiated field (_ Ha, _ in the absence of the
._scat s cat)

scattering cylinder and of other sources, then (E , H is the scattered

field produced by (E° , Ho).
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On the basis of this principle, we see that the considerations of Section 1. 2.5

also apply to scattered fields.

Now let us consider a pair of functions, ej .mJ, which are either (1)approxi-

A A -mA whcAr ihe 1apo
mations to K sI or (2) contributions to K.e sXIn Intesnetamk8adýI r

represented as sums and ere terms in these sums; or (3) approximations to

contributions. Then the formulas we have already cited can be used to calculate

quantities Ecat H A _}scat, H fi, and W which are the

scat Scat A scat
corresponding approximations or contributions to Es , H , E

sat A
f a , and W For example, if K a are the physical optics, fandW. or xamletfKej, -mJ

contributions to K- -i then Escat, H scat are the physical optics contributions

to the scattered field. The considerations of Section 1. 2.5 apply individually

to each contribution, but the behavior for large Re of an approximation

or contribution may not be the same as that of the true field. For example, in the

case of scattering of a normally incident plane wave from an infinite half-plane,

the radiation vector f is not defined in the back-scatter and forward -scatter

directions. However, the contribution fj corresponding to the fringe wave current

is defined for these directions.

123



1.3.2 THE PERFECT CONDUCTOR CASE

A perfect conductor problem is characterized by the boundary condition

=0. (1-118)

By applying this condition and (1-22), we find that the boundary conditions on Et
and ^Ht at L are

Et = 0 (1-119)

and

N/n = 0. (1-120)

We thus obtain two uncoupled scattering problems and can calculate Et and it In-

A scat
dependently of each other. A corollary observation is that t does not produce any Et

and^ ^ scat.

and Eot does not produce any Ht

It is convenient to represent the surface current and the scattered field as the

sum of a term which depends on H but not on E plus a term which depends on Eot
A.but not on Hot. TheseA two terms correspond to the two principal polarizations In planeA

wave scattering; H dependence is the generalization of perpendicular polarization and Eot
Hot

dependence of parallel polarization. Thus we write

A A
Ke=Ki +

e- -e (1-121)

where

A ,AI A

e et - ef (1-122)

A
Is a function of Hot and

Ali =All
"-e et t (1-123)

A A I1
is a function of E . The fact that K e has no I -component follows from the fact that
A Ot A scat.
Eot does not produce any H t We use superscripts I and II to avoid confusion

with the dyadic elements of Section 2.1.5.

From (1-23) we find
A k"1 t a t.
Ket 2 -- -f'Kel "(1-124)
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There are, however, very important situations in which we find It useful to representA 1
K in terms of contributions for which (1-124) does not hold. Use of such
ontritaons leads to a spurious cat term, spurious in the sense that its sum

over allcontribution. is zero. This complication arises, for example, in the case
of a wedge with one face illuminated, if we decompose _Qinto physical optics
and fringe wave contributions. (See Section 2.1.6. )

In light of this, we shall consider two different sets of formulas for perfect conductor
problems. The first is valid for all contributions and approximations to the surface
current which are used in practice. The second is a simplified version valid for the
true field and for contributions and approximations for which (1-124) holds.

In perfect conductor problems, we never use non-zero contributions or approxi-
mations to Km and we always use contributions or approximations with e % independent

of Eot' We thus find

Agnt Zfd 2 j ^, ) A
Et -et+ tkt KA)

=d 2 A•,A + ý2 -A 1 +it BG A
Idet k K GK + k - T K (1-125)

n e (1-126)

The expressions for V Ett and V ZHt are readily found from these

formulas and we shall omit them. The expressions for W and W in the

various scattering formulas simplify to
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A

WI r m =(u- xZK,~',) (1-127)
W ZWg -ZK= 6 ( _+. 8) Z ee') (K-1)

tisc ^vnin to inrdc^hentto

A k=t Az t

FL w Ketl _ K(119

! and

A + ^ t a A
ZrVII R7 "tt -'• Tr (ZK efl)}(-0

R Is convenient to Introduce the notation

W = Wt + wxuj = wt + w I11

with

A A
rego n ) vl e -1 ZK ctb u u a1-132)

A2 k

W^ k A t A

A... . k Y i ds - " n' ZK (-133)WX- '-"et u'- I• _ ef
A A k A

WX•ZK1t + -I8-Tr (ZKo ) 1 (1-134)

Using these expressions for W and *V, we can determine f and the radiating near-fteld
region values of ?Ca on JRSca by the usual formulas. Equations (1-125) to (1-134) are

valid for all contributions and approximations used In practice.

When the condition (1-124) bolds, (1-125) simplifies to

•seat k Z AL -l

t L et
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an h eutonfr scat iNscatand the equation for V s l simplifies in like manner. The expressions for Htand V^Ntscat do not simp•lify.

"The most Important simplification is that of W. The 'cross term" %T vanishes- A
and thus we have

S--- Wt(1-136)

Cbviously this is easier to work with than W, so we shall not even consider the form

which W takes.

We shall now consider the relationship of problems with kt 0 to L-

lent normal incidence problems with k replaced by k and kt set to zero. In doing so,

we shall restrict consideration to fields for which (1-124) holds.

We begin by noting that the surface currents are functions of and f and linear
functionals of the Incident field. Thus we can write

Ae f Lit A•! 1, ) kOt ( 1) (1-137) 4

=L (k; f,I') ( (1-138)et If Eel

with L and L,, linear integral operators which convert a function of i' into a function

of 1. The fact that ^KeI and Ket depend on k and kt only in the combination k is a

consequence of the perfect conductor boundary c3nditton. It is a very Important fact,

because It enables us to make meaningful comparisons between problems with the

same k but different k and kt.

We shall define an equivalent normal Incidence problem in the same way we used

in Section 3.3.3 of Reference 2, where the definition was motivated by the fact that it

leads to equal radar cross-sections for the original and equivalent problems. Under

thins definition, a problem with

A
kt = 0, k =- k, Hot = HoEt Eot =0 (1-139)

is the equivalent of a problem with

A

kt*0,k= 2+k ) H0 t = 2 Ho+t, Ek2=0 . (k-140)
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if the solution to the first problem Is

Hscat .seat Escat _sat WIE u - {=E1' (1-141)
--- nEt !=-EP e E=KEla W-- t

then the solution to the second problem is s

atkt cat A scat scat
Hsa •sat + --VIVIsE

EtEt' - -EPtkk

A kt
A k K t -L- K (1-142)

1/2f (---() fZ~-• "i

El-i

Similarly, a problem with

kt = 0, k = k, Eot =0Eogt H = 0

is the equivalent of a problem with

A
A2 2 1/2 k

kt#0, k=k +(kt + k .ot= EoEt,, Hot= 0 (1-144)

if the solution to the first problem 1s

E scat scat scat scat K (1-145)
E EEl t ! -- :jp 't H KEtt'- WtW -' f (-145.)

then the solution to the second problem is

Ascat k scat t scat _

Etct Escat 1/2 (1-146)

=K t k1/ s

4 =KEt-' w : W t u (k, kt a ), f e (
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Verification of these equivalences is straightforward. It involves lice of

(1-126), (1-135). (1-2k), (1-23), 11-132), and (1-104) and of the fact that (1-124)

holds separately for the Incident and for the scattered field.

By use of trh equivalence concept, we can replace a problem involving

an incident field with exponential dependence along the axis by two uncoupled problems,

one for each polarization, tnvolving fields with kt = 0. Conversely, when we

solve a kt = 0 problem, we have in doing so effectively solved a class of oblique Inci-

denwe problems. it must be emphasized, however, that the equivalence concept is a
result of the special characteristics of perfect conductor problems, not a general rule
for scattering problems.

L3.3 PLANE WAVE INCIDENCE

We shall now consider the case in which the incident field is a homogeneous

plane wave incident at angle 3!S (see Figure 1). We describe such a plane wave

using (2-3) and the associated definitions of Section 2. 1. 1, and recall that an alternative

description of the same wave is given by (1-1) to (1-3). We can now readily verify

that, in order for the axial variation of the incident and scattered waves to match,

we must have

-•1' (1-147)

and thus our use of the same notation /3 for both these quantities is justified.

We have already noted that the effective surface currents are linear functions of

Io and Et. These in turn are linear functions of E° p for plane wave incidence. Thus

It follows that it is legitimate to relate the surface currents to E p by surface current

dyadlcs Ke, K as is done in (2-27) to (2-29)of Section 2.1.3.

"The general expressions for the scattered field now become

t n" G e- -e

tscat (Z2d
ZHt Eon' (l -1kcos 2/3 Gt " sin# Vi" ' +. p , (1-149)
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A A

and corresponding expressions for VEt and V(ZHt) which can be used in

(1-22) and (1-23).

For the radiating near-field region, we readily obtain

A scatE . (1-150)

A Scat 
kii,_1

ZH =EoLkLdI' U (k, k sWI, x I(k;j, 01;kstnAV) (1-151)

-o It)LI-r

with W of the form

A A

X I

w=- ~ x (u-rxK a )+UrxK '

=W u e W iW e W (1-152)

"The elements of W are

w =, -( n') A~J + coS •z3  e - sin,,% . K A

Alternatively, W can be replaced by W with elements

W.= ~f'ZKe +COS/ 3 KA1 noW =•.n.) • t ant3-K J =,, (1-164)

A I=(Tn) +cosI 3 ZK A t+ tan 13 )
ii, f j eti IF 37,r- (z el

The equations (1-150) and (1-151) are the Jumping-off point for the development of a

diffraction coefficient representation of scattering at finite ranges. We shall not,

however, pursue this line of investigation here.

We also readily verify that the far-field scattering is given by (2-19) witt f of

the two-component form (2-21) and given by

f=E_ 0 r7 1 . -t _!4 kfld1expl- k ucd/3e. e_'IW(k; 3, O;k sin3;0; V') . (1-15t.)

_o 2(2") 
r/2
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For far-field work, it is convenient to proceed as in (1-110) and express W' In tOrms of

arguments /3 and Ie 1nstead of (k sin13) and • We thus have
-r

w = y) (1-:.56) '

and similarly for 1. We now see that this W and W are indoed special cases for/3 1

o3i - j of the %i and W= defined by (2-30), (2-31), and (2-33). (The notation here is a
little more general than that of Section 2 in that we use an arbitrary real wave Imped-

ance Z Instead of specifying the free space wave impedance Zu. ) Furthermore, if wt

define the diffraction coefficient d as in (2-22) to (2-24), we find from (1-155) that d is

indeed given by (2-32).

To verify the basic symmetry property (2-34), from which (2-35) to (2-37)
A scat

follow, we first note that replacing (3 by -fl will not affect the sign of* H t.
A scat

the contribution to Htt due to the J-polarized component of the Incident

field, nor the sign of i scat Then (1-22) and (1-23) tell us that the signs of-t I,
A Seat scat sa
Eps and Apl are also unchanged abut the signs of cascat and H t-t hbu h sgso t0,an reverse.

A Seat _ scatrersA second applIcation of (1-22) and (1-23) tells us that Ep, and p At reverse

signs. Upon replacing the fields by the corresponding surface currents (See

(2-26C).), we obtain (2-34).

Turning to the perfect conductor problem, we confirm from ([-118) and (1-123)
A A

that K and K are zero, as stated in (2-38). The results (2-39) and (2-41) are

obtained from the equivalences derived in Section 1. 3.2. The result (2-40) follcws

from (1-224) andl the tquivalences.

As in Section 1. 3. 2, we have two different sets of formulas for the perfoct

conductor problem, the first valid tr all contributions and approxlimtions used in

practice-- including those for which (2-40) doos not hold--and the second valid for

the true field and for contributions and approximations which ,atisfy (2-40).
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In the fitst case, (1-148) and (1-149) reduce to

A Seat= zfd k 00s$26er 4 2  .2 a ' k 9 tnop5' .±)1,(-157)

ZA 
2a. - * i 

(1-158)

and there are corresponding expressions for 7Et Oat and V7 Z at which can

be used In (1-22) and (1-23). In the radiating near-field region, (1-150) and (1-151)

hold with

W~W+X~ X.~ ~e , 
1-51

(1-160)

W,,,,= cos ZK

A 
A

=Cos 8 ZK ' sinI3 (iL n' ZK e ., 
(1-163) I

A tan .19 ((_Z4
=0osfl ZK K _

From these formulae and the equivalences of Section 1. 3.2, we readily confirm that the

far-fReld ocatteriig is given by (2-19),(2-22), and (2-32) with W and W given by

(2-4Z), (2-43), (2-45), (2-46), (2-52), ard (2-53). The expressions (2-48) and (2-49)

for the dq arv consequences of the results for W.

When (2-40) holds, '1-157) simplifles to

scat,, (1-165)
Etca E 0o ik 2 Cos2• • o, "•

scat

and there io an analogous exp-.essiof for VE8 a*in the radiating near-field region

and In the far-1teld region, we h~ve 
:

0,- (1-166)

so we can use J-160), (-151), (2-19), (2-22), and (2-32) with
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Wt (1-167)
S= wri

This result confirms (2-47) and thus (2-50). It is readily verified that W. is given by

(2-44) in the far field, but in practice we would never use W instead of W when (2-40)

holds.
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LIST OF SYMBOLS

(We omit dummy variables, quantities which appear only in derivations,

quantities which are only used within a few lines of where they are defined, and

quantities which are used only in Section TV, which Is short enough so that there is no

problem keeping track of the notation.)

A) If A is a scalar, vector, or dyadic, then

A', when it appears under an integral sign, signifies A taken as a

function of the integration variables. There is one exception to this rule,

namely VB'.

If A is a complex scalar, vector, or dyadic, then

A is the complex conjugate of A.

AR is the real part of A. (Note: There is one exception, G Also,

R as a subscript on the real scalars 0 and 6 has another meaning.)

AI is the imaginary part of A.

If A is a scalar, vector, or dyadic which has exponential variation along

an axis, then we use the notation
A

A Aexp I-ik tt I

where

t is the length parameter along the cylinder axis.

kt is the axial wave number (See Section L 2.1, also Sections

2.1.2 and [.1. ).
A
A is independent of t.

If A is a vector, then

A, =-I" A

At = A. A

A= tx x) =A-A t

where

t is the unit vector along the axis of a cylinder, which can be

an infinite length cylinder (See Section 2. 1. 1. ) or an incremental
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length cylinder (See Section 3. 1.1).

I is the unit tangent to the cylinder In a plane normal to t

(See (2-1).).

If Is a dyadic, then

Ail, = _ _ A±1 =e_. A. t_ A, 1 ._=Ae

AA1 -e7 e A j
Al,,, _. A. e At=,. A. I At, S t"

Ai, =8 l ltA A ,,,

where

_e , e i are unit polarization vectors deflind by

(2-5), (2-14), and (2-15).

For convenience, we sometimes use the simpler notation

Aj instead of Ali

A 11 instead of A1111

Ax instead of Ahi

B) Additional subscripts and superscripts which have specific meanings:

E indicates a quantity obtained from the equivalent normal incidence problem

(See Section 1.3.2.).

e Indicates an electric current or related quantity.

I Indicates a quantity related to the incident field.

K indicates a quantity for use in Keller's Geometrical Theory of Diffraction

(GTD).

m indicates a magnetic current or related quantity.

PO indicates the physical optics contribution to a quantity.

s indicates a quan ity related to the scattered field.

scat Indicates a scattered field,

U indicates the fringe wave (Ufimtsev) contribution to a quantity.

o indicates an incident field or a current source distL lbution.
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+ indicates a quantity associated with the surface S+, which intersects

the surfacq 8_ to form an edge. For example, da+ Is the contribu-

tion to da from the current on S+.

- indicates a quantity associated wtth the surface S_ (See +).

C) Other symbols:

b Unit vector normal to t and no (See (2-54) and Figure 3).

C An edge (See Section I and Figure 3.).

c Speed of light.
a V, A V

D Support of the functions Keo K "' (See Section L 2.3.).

D Three-Dimensional Diffraction Coefficient (See Section 3.1. 1.).

l Value of D calculated by assuming currents Ke, K on R
cylinder of finite length (See Section 3.1.2.).

da db Scalar diffraction coefficients related to d for a wedge (See

(2-80b).).

d* d1I , dx See (A).

dq+9 d for q = 1, 11, x, a, b Contribution to dq from the current

on S+ or S_ respectively.

dt Quantity related to d 111 (Sce (3-32), (3-33).).

dlt* Quantity related to dilL (See (3-42) to (3-46).).
d. d** Alternate notation for d,* rpectvely.

(k;8t, 0,;js, %q) Incremental Length Diffraction Coefficient (ILDC)
(See Section II. ); also, for 0 9 - ' Two-Dimensional Diffraction

Coefficient (2-D DC) (See Section IL).

dj Contributions to 0 from the current on S+ and S respectively.

dP0 d Contribution to s from an incremental length element of a

cylinder (See (3-8).)

dF0 Radiation vector corresponding to dP (See (3-7).).
E. i Components of _ (See (1-63).).
E Electric field.

e er Unit vectors which indicate the directions of the scattered

wave (e2 ) and the incident wave (-e ) (See Sections 2.1.1, 2.1.2,
r -r
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9 2r e ni vectors along th projections Of a an !. respectively
Onto a plane normal to tbe cylinder axis (See (2 - ,. (2-13).).

0 UnWit vector normal to t which serves as an azimuth reference (See

Section 2. 1. 1. ). For the wedge, we use e x .- 11 (Bee Figure 3.)

e 'Unit vector normal to t and e x(See Section 2. 1. 1.).

e~ I e I Polarization vectors for the scattered and Incident
fields (See (2-5), (2-14), and (2-15).).

0 , Unit tangent vectors normal to t on S~ and S respectively
(See (2-56) and Figure 3. ).

F Radiation vector for a three-dimensitonal problem (See (3-2),

ff V q)A ucto rlte(3-3).). fra ege(ee(-5)
(3-56), (3-57), (3-60).).

f+,f auso o the arguments (V4 ,' 1 and (V_ ,4 respectively

f Radiation vector for an Infinite cylinder problem (See (2-19),
(2-22).).

G Two-dimensional scalar Green's function (See (1-29).).
GE R9G G,0 Approximations to G (See (1-39), (1-44), (1-46A).).

g, g (V, t) A function related to the TLEDC d for a wedge (See (3-53),
(3-58), (3-59). ).

9+1 g- Values of g for the arguments (V+, 0k+) and (V_ , 0b) respectively

(See (3-55).).
H Hankel function of first kind and order n.

H Magnetic field,

h (ig, 16 Quantity related to d Ili (See (3-25), (3-29), (3-32).)

Unit dyadic for vectors normal to t (See (1-35).).

Square root of -1; exp I -tw 41 time dependence io used.

K Effective electric and magnetic surface current respectively (See
(2-25), (2-213). ). On a pierfect cond-ictor, K e Is the true surface current.

Ke, LKm The effective surface currents on an infinitely long cylinder

when used as an approximation or contribution to the currents on a

finite or incremental length of cylinder (See Section 3.1.2.).
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9K K Electric and magnetic volume current distributions (See $ection L 2.3.).e-m

A Ai K e For an Infinite length cylinder, the contributions to K ivduced by the
-e' -e e

l-polarized and 1--polartzed componenta respectively of an Incident

wave with exponential variation along the cylinder axis (See Section

1L3.2.).

A
K A surface current dyadic, either eloctric or magnetic.

= _, _ _ Electric and magnetic surface current dyadics respectively

(See (2-27).).

k Wave number.

kt Axial wave number (See Section L 2.1, also Sections 2.1.2 and
I.1. ).

A
k Transverse wave number (See (1-18).).

L The curve normal to t which describes the cross section of
a cylinder (See Section 2. 1. 1 and Figure 1. ).

Length parameter along L (See Section 2. 1. 1.).

I Unit tangent to L (See (2-1).).

Sn Unit outward normal (See Section 2. 1. 1.).

n Unit vector which bisects the wedge angle and points out of the

wedge (See Section 2.2.1 and Figure 3.).

n Unit outward normals to S+ and S_ respectively (See (2-55).).

P, Po These symbols are to be read as capital rho. Therefore they are
included in the alphabetic listing of Greek-letter symbols.

Polarization vector of the Incident wave. (See Section 2.1.1.).

1 0  Distance to a point in the far-field region. For a three-dimensional

body, RB0 is measured from the origin (See (3-1).). For an Infinite

length cylinder, R 0 Is measured from the axis along the unique

scattered ray which passes through the far-field point (See (2-10)

and Figure 2. ).

r Position of a point in space.

S The surface of a three-dimensional body.

S+, S The two surfaces which intersect to form the edge C (See Section

2.2.1 and Figure 3. ).
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S Complex Poynting vector (See (1-65).).

T Length of a finite cylinder (See Section 3.1.2.).

T 0 Point on the axis of an infinite length cylinder from which a scattered

ray appears to originate (See 2. 10 and Figure 2.).

S Time.

jt Length parameter along the cylinder axis (See (2.2).).

t Unit vector along the cylinder axis (See Section 2. 1. 1.).

U, U+, U Step functions (See (2-102), (2-103), (3-67).).

u Real number related to v (See (3-51).).
8 8 es

Complex vectors which are generalizations of e.a, eae-r

respectively (See Section I. 2. 3.).

V Argument of the functions f and g (See Section 3.2.1.).

+ V Values of V corresponding to the scattering from S+ and S

respectively (See (3-47), (3-48).).

V Vector field used In calculating the field produced by a

volume distribution of current sources (See Section 1. 2. 3.).

Voo V0 0 1• Quantities used in calculating the field produced by a

line source (See Section 1.2.3.).

v, v+, v Quantities related to V, V+9 V by (3-50) and (3-51).

vB Quantity related to f and g (See (3-52), (3-53).).

8' a iB/a (See (3-54).).

W1i"*, Will* Quantities related to Wj.L and W111, for perfect conductor

case (See Section 3. 1. 5. ). (Note: There is no dyadic W *)

WHI*, WIIL** Quantities related to W (See Section 3.1.5.). (Note:

There are no dyadics ýV * or W *.)

W , W, W1t Surface vector quantities used in calculating the field produced

by a surface current distribution (See Section 1. 2.4.j.
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W, W Dyadic quantities used in calculating the field produced by a

surface current distribution (See Section 2.1.3.).

w Real number related to v (See (3-51).).

X Half of the phase difference In radians between far-field

returns from the two ends of a finite cylinder (See Section 1,

Section 3.1.2.).

Z Wave impedance of a medium.

Z 0Wave impedance of free space.

a Interior half-angle of a wedge (See Section 2.2. 1 and Figure 3.).

(Note: a Is used with a different meaning in Section 4.2. )

13 Used instead of Ot and 06 in Appendix, which deals only with

|j cases for which 09s = Or"

: I o th cylnderaxis(Se

Angle describing the obliquity of e to the cylinder axis (See
r

(2-7) and Figure 1).

13 Angle describing the obliquity of e to the cylinder a-xis (See
s r

(2-11) and Figure 1.).

13 * Quantity related to s and 03 (See (3-34).).

6(E) The Dirac delta function for a, point singularity at O= 0 in a two-

dimensional space (See (1-31).).

The angles measured from ý s to each of the
6S+' 6R+; 8-6R- -r

four shadow and reflection boundaries (See (2-71) to (2-74).).

6d Measure of the error introduced when d (a1; 3 0 is approximated
q q I t

, ~ ~~by dq B ; i (See. (3 -1 ))

6 wQuantity related to 6d (See Section 3.1.4.).
q q

Number eoual to v when v is real (See (3-51).).
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v Wedge factor (See (2-58).).

P Distance from P' to P (See (1-30).).

Po Radial distance from the cylinder axis to a point In the far-field

region (See (1-42).).

P Projection of r onto a plane normal to the axis (See (2-2).).

..' When not under an integral sign, signifies the value of Pat

a source point (See Section L 2.2.).

a_ Unit vector pointiag from P1 to p (See (1-34).).

AlAzimuth angles cf and e 1 respectively (See Section 2.1.2•s •i ziuh ngesef!r -r

and Figure 1.).
AI As

Azimuth angle from e to er (See (2-75).).

R;OS-' OR_ The azimuths of the four shadow and reflection

boundaries (See Section 2.2.2.).

OZ The sum (Ot +0,) (See (2-76).).

Angle which is argument of f and g (See Section 3. 2. 1.).

hi,*+, ,/, Values of v associated with the scattering from S+

and S respectively (See (3-47), (3-48).).

R adian frequency.
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